首页|基于波动因子调节的智慧校园网络虫洞攻击检测

基于波动因子调节的智慧校园网络虫洞攻击检测

扫码查看
当前对于智慧校园网络虫洞攻击检测多采用关联知识图谱算法,缺少对攻击有效期波动因子的调节,导致虫洞攻击检测率较低,检测效果不佳。为此,在云计算环境下提出基于波动因子调节的智慧校园网络虫洞攻击检测方法。通过分析网络虫洞攻击原理与类型,构建虫洞攻击模型,并对网络可疑链路进行识别,引入状态函数对攻击有效期的波动因子进行调节,由此建立虫洞攻击验证机制,基于此,结合云计算环境提取虫洞攻击事件的特征属性,并构造虫洞攻击衡量的标准表达式,进而实现网络虫洞攻击识别。实例应用结果显示,所提方法能够有效检测出网络虫洞攻击,检测率较高,检测效果更佳。
Smart Campus Network Wormhole Attack Detection Based on Fluctuation Factor Regulation
Currently,association knowledge graph algorithms are commonly used for detecting wormhole attacks in smart campus networks,but there is a lack of adjustment for the fluctuation factor of attack validity period,resulting in a low detection rate and poor detection effect of wormhole attacks.Therefore,a smart campus network wormhole attack detection method based on fluctuation factor adjustment is proposed in the cloud computing environment.By analyzing the principles and ideals of network wormhole attacks,a wormhole attack model is constructed,and suspicious links in the network are identified.A state function is introduced to adjust the dynamic factor of the attack validity wave,and a wormhole attack verification mechanism is established.Based on this,the characteristic attributes of wormhole attack events are extracted in the cloud computing environment,and a standard expression for measuring worm-hole attacks is constructed to achieve network wormhole attack recognition.The application results of the example show that the proposed method can effectively detect network wormhole attacks,with a higher detection rate and better detection effect.

cloud computing environmentsmart campusnetwork wormhole attacksattack detection

许德斌

展开 >

合肥职业技术学院办公室研究馆

武汉大学信息管理学院(安徽 合肥 230012)

云计算环境 智慧校园 网路虫洞攻击 攻击检测

2024

通化师范学院学报
通化师范学院

通化师范学院学报

影响因子:0.266
ISSN:1008-7974
年,卷(期):2024.45(12)