天津大学学报(英文版)2024,Vol.30Issue(4) :324-336.DOI:10.1007/s12209-024-00402-4

Insight into the Alkali Resistance Mechanism of CoMnHPMo Catalyst for NH3 Selective Catalytic Reduction of NO

Kaixin Wang Yunchong Wang Zongxiang Yang Xinyue Wang Caixia Liu Qingling Liu
天津大学学报(英文版)2024,Vol.30Issue(4) :324-336.DOI:10.1007/s12209-024-00402-4

Insight into the Alkali Resistance Mechanism of CoMnHPMo Catalyst for NH3 Selective Catalytic Reduction of NO

Kaixin Wang 1Yunchong Wang 1Zongxiang Yang 1Xinyue Wang 1Caixia Liu 1Qingling Liu1
扫码查看

作者信息

  • 1. Tianjin Key Laboratory of Indoor Air Environmental Quality Control,School of Environmental Science and Engineering,Tianjin University,Tianjin 300350,China;State Key Laboratory of Engines,Tianjin University,Tianjin 300350,China
  • 折叠

Abstract

The existence of alkali metals in flue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NOx).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NOx conversion at 150-300 ℃.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specific surface area of the catalyst,which provided abundant adsorption sites for NOx and NH3.Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrificing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH3 adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH3-SCR catalyst with high activity at low temperatures.

Key words

NH3-SCR/Alkali resistance/Phosphomolybdic acid/CoMn

引用本文复制引用

出版年

2024
天津大学学报(英文版)
天津大学

天津大学学报(英文版)

EI
影响因子:0.343
ISSN:1006-4982
段落导航相关论文