首页|基于显著性双流分层感知的NR-IQA方法

基于显著性双流分层感知的NR-IQA方法

扫码查看
人类会对图像中自己感兴趣的区域给予更多关注,所以发生在这些区域的失真更容易影响人类的主观质量分数,而传统的图像质量评价(IQA)方法并未考虑到图像中不同区域受到关注度的差异,导致预测分数与主观质量分数的拟合程度较低.针对上述问题,本文利用显著图对图像中受关注区域的突出表达能力,提出了一种基于显著性双流图像质量评价(SDS-IQA)方法.该方法采用显著图分支和原始图分支组成的双流分层结构,从整体和重点两个方面实现图像的多尺度失真感知,并通过双重注意力在所有维度上体现特征的重要性差异.SDS-IQA 在特征提取阶段通过在显著图分支使用空间注意力来体现尺度空间上的关注度差别,并通过空间注意力权重来强化原始图分支的失真信息表达,在特征融合阶段使用门控注意力强化通道间的交互,使通道间的关注度差异在融合时得到体现,最终实现对受关注区域中失真的重点表征.实验结果表明,该方法在 3 个合成数据集(LIVE,TID2013,CSIQ)上的皮尔森线性相关系数分别达到 0.976、0.896 和 0.865,在 2 个真实数据集(LIVEC,KonIQ-10k)上分别达到 0.869 和0.877,证明SDS-IQA的预测结果与人类主观评价有良好的拟合性.
No-Reference Image Quality Assessment Method Based on Saliency-Map and Dual-Stream Hierarchical Perception
Humans pay more attention to the regions of interest in an image,so distortion in those areas is more likely to affect their subjective quality scores.However,traditional image quality assessment(IQA)methods do not take into account the difference in the attention received by different regions in the image,resulting in a lower degree of fitting between the predicted score and the subjective quality score.Aimed at the above problems,a saliency-map-based dual-stream image quality assessment(SDS-IQA)method to highlight the area of interest in the image was proposed.A dual-stream hierarchical structure composed of a saliency map branch and an original image branch was used to realize multi-scale distortion perception of images from both the whole and the focus,reflecting the importance difference of features in all dimensions through dual attention.In the feature extraction stage,SDS-IQA used spatial attention in the saliency-map branch to reflect the difference in attention in the scale space,strengthened the distortion information expression of the original image branch through spatial attention weight,and used gated attention to strengthen the interaction between channels in the feature fusion stage,so that the attention difference between channels could be reflected during fusion and the key characterization of distortion in the region of interest was eventually realized.Ex-perimental results show that the Pearson linear correlation coefficient of this method reaches 0.976,0.896 and 0.865 on three synthetic datasets(LIVE,TID2013,CSIQ),and 0.869 and 0.877 on two authentic datasets(LIVEC,KonIQ-10k),respectively,proving that the prediction results of SDS-IQA have good fit with human subjective as-sessment.

image quality assessment(IQA)saliency mapattention mechanism

史再峰、康泰、王云峰、肖云泽、罗韬

展开 >

天津大学微电子学院,天津 300072

天津市成像与感知微电子技术重点实验室,天津 300072

天津大学智能与计算学部,天津 300072

图像质量评价 显著图 注意力机制

2025

天津大学学报
天津大学

天津大学学报

北大核心
影响因子:0.793
ISSN:0493-2137
年,卷(期):2025.58(2)