首页|基于注意力机制的端到端轻量化星图识别算法研究

基于注意力机制的端到端轻量化星图识别算法研究

扫码查看
星敏感器在航天任务中通过对恒星进行识别以实现姿态测量,而星图识别算法作为其核心部分决定着星敏感器姿态定位的性能.针对现有的基于神经网络的星图识别算法难以在保证识别准确率的同时限制计算成本的问题,提出了一种基于注意力机制端到端轻量化网络 MobileCiT 的星图识别算法,用于直接识别星敏感器中的含噪声星图.MobileCiT 在卷积神经网络的基础上采用深度可分离卷积和改进前置倒残差结构以实现星图识别算法的轻量化,同时引入注意力机制以重点关注星点位置信息.此外,由于实拍星图的成本高,噪声不可控,采用基于小孔成像的坐标映射模型以生成含噪声的仿真星图训练集与测试集.实验结果表明,MobileCiT 对含不同噪声星图的识别准确率为 99.850%,高于现有的基于轻量化网络 MobileNet 和 MobileViT 的星图识别算法,对位置噪声、星等噪声、假星和缺失星均具有良好的鲁棒性,能够在无需背景去噪、连通域检测、星点质心提取等预处理操作的情况下实现高精度的星图识别.MobileCiT 在提升识别精度的同时具有较低的计算成本,计算量仅为基于 MobileViT 网络算法的 1/3.在此基础上,将 MobileCiT 与基于子图同构的星图识别算法和基于模式识别的星图识别算法进行对比.在相同的视场范围与噪声条件下,MobileCiT 依旧表现出了更高的识别准确率与更强的鲁棒性,这进一步验证了MobileCiT相对于传统星图识别算法的先进性.
End-to-End Lightweight Star-Map Identification Algorithm Based on Attention Mechanism
Star sensors measure attitude by identifying stars in space missions,and star-map identification algorithms,as the core part of the sensors,determine the accuracy of the star sensors'attitude measurement.To ad-dress concerns that existing neural network-based star-map identification algorithms hardly reduce computational costs while guaranteeing identification accuracy,this paper proposes an end-to-end lightweight network star-map identifi-cation algorithm(i.e.,MobileCiT)based on an attention mechanism to directly identify noisy star-maps in star sen-sors.MobileCiT employs depthwise separable convolution and an improved pre-inverted residual structure based on a convolutional neural network.It also uses an attention mechanism to focus on the position information of star points.In addition,because of the high cost and uncontrollable noise of real star-maps,a coordinate mapping model based on small hole imaging is used to generate noisy simulated star-map training and test datasets.The experimental results show that the identification accuracy of MobileCiT for different noisy star-maps is 99.850%,which is higher than those of existing star-map identification algorithms based on the lightweight networks MobileNet and MobileViT.Moreover,it has good robustness to positional and magnitude noises,as well as false and missing stars.MobileCiT realizes high-accuracy star-map identification without the need for preprocessing operations,such as background denoising,connectivity domain detection,and star centroid extraction.MobileCiT improves the identification accu-racy with low computational costs,and the computation load is one-third of the algorithm based on the MobileViT network.MobileCiT is compared with star-map identification algorithms based on subgraph isomorphism or pattern recognition.Under the same field of view and noise conditions,MobileCiT showes higher identification accuracy and robustness,further verifying its superiority over traditional star-map identification algorithms.

star-map identificationattention mechanismlightweightstar-map simulationconvolutional neural network(CNN)robustness to noise

伊国胜、杨翰文、司文杰、李冰、王彦博、韩春晓

展开 >

天津大学电气自动化与信息工程学院,天津 300072

北京航天自动控制研究所,北京 100854

天津职业技术师范大学自动化与电气工程学院,天津 300222

星图识别 注意力机制 轻量化 星图仿真 卷积神经网络 噪声鲁棒性

2025

天津大学学报
天津大学

天津大学学报

北大核心
影响因子:0.793
ISSN:0493-2137
年,卷(期):2025.58(3)