首页|基于RT-YOLO-V5的芯片外观缺陷检测

基于RT-YOLO-V5的芯片外观缺陷检测

扫码查看
针对传统的人工芯片检测方法效率低、过分依赖人为操作且误检率高等产生的问题,提出了一种基于Res-CBS模块与增加微检测层(Tiny-scale detection layer)的RT-YOLO-V5检测方法用于检测芯片外观缺陷。首先搭建了图像采集系统,并制作了芯片外观缺陷检测数据集。为解决芯片外观缺陷形状不规则、大小不统一、位置不确定带来的检测精度低等问题,在CBS模块中增加短连接,融合输入输出的特征信息,减少信息损失,优化推理速度;其次,增加一个微小尺度的检测层,提高模型对微小目标的特征提取能力。实验结果表明:使用改进后的网络对芯片外观缺陷进行检测,平均精度(mAP)达到95。5%,相对于原始网络提升了 5。7%;除此之外,改进后的RT-YOLO-V5在先验框损失(Box_loss)与小目标缺陷的检测精度上都得到了 一定的提升。
Chip appearance defect detection based on RT-YOLO-V5
Aiming at the problems caused by traditional manual chip detection,with low efficiency,excessive dependence on human operation and high misdetection rate,an RT-YOLO-V5 detection method was proposed to detect chip appearance defects based on the Res-CBS module and an additional Tiny-scale detection layer.First of all,an image acquisition system was built,and a chip appearance defect detection dataset was produced.Due to the de-fects are irregular in shape,inconsistent in size and uncertain in location,the performance of YOLO-V5 network can no longer meet the detection requirements.A short connection was added to the CBS module,fusing the fea-ture information of input and output,reducing the information loss and optimizing the inference speed.In addi-tion,a tiny-scale detection layer is added as well,to improve the feature extraction capability of the model for tiny targets.The experimental results show that using the improved network for chip appearance defect detection,mAP reached 95.5%,which was a 5.7%improvement compared to the original network.In addition,the im-proved RT-YOLO-V5 has gained some improvement in both Box_loss and the accuracy of tiny-scale defect de-tection.

YOLO-V5chipdefect detectingfeature fusionconvolutional neural network

郭翠娟、王妍、刘净月、席雨、徐伟、王坦

展开 >

天津工业大学 电子与信息工程学院,天津 300387

天津工业大学天津光电探测技术与系统重点实验室,天津 300387

中国航天科工防御技术研究院微电子器件可靠性实验室研究与试验中心,北京 100854

YOLO-V5 芯片 缺陷检测 特征融合 卷积神经网络

中国博士后科学基金面上基金资助项目天津市科技计划资助项目天津市科技计划资助项目

2019M66101320YDTPJC0109022YDTPJC00090

2024

天津工业大学学报
天津工业大学

天津工业大学学报

CSTPCD北大核心
影响因子:0.404
ISSN:1671-024X
年,卷(期):2024.43(3)
  • 26