首页|结合最小数据集和改进灰色-TOPSIS的全国耕地土壤质量评价及影响因素研究

结合最小数据集和改进灰色-TOPSIS的全国耕地土壤质量评价及影响因素研究

扫码查看
探究耕地土壤质量的空间分布及影响因素,为指导农户行为及促进农业生态可持续发展提供理论依据,基于中国土壤数据集(HWSD V2.1),利用主成分分析构建耕地土壤质量评价的最小数据集,结合灰色-TOPSIS多目标评价模型,对全国(港澳台除外)耕地土壤质量进行评价,运用地理探测器探索外部因子(年平均降水、年平均温度、人口密度和GDP)对耕地土壤质量的影响程度.结果表明:(1)最小数据集能有效减少指标体系之间的相关性,改进灰色-TOPSIS方法一定程度上提高耕地土壤质量评估的准确性;(2)根据耕地土壤质量评价结果,将耕地质量分为 5 个等级,从全国范围来看,长江中下游区、华南区耕地土壤质量较好,而黄土高原区、青藏高原区、内蒙古高原区耕地土壤质量则较差;(3)从地理探测器结果来看,年平均温度与年平均降水量共同对耕地土壤质量的解释程度大的省份共有 20 个,远远大于其他两两因子共同对耕地土壤的解释程度,2 个因素交互作用效果大于单因子对耕地土壤质量的影响.综上,年平均降水量和年平均温度是影响耕地土壤综合质量的主要因素.
Evaluation of National Arable Land Soil Quality and Influencing Factors by Combining Minimum Dataset and Improved Gray TOPSIS
In order to explore the spatial distribution and influencing factors of arable soil quality and provide a theoretical basis for guiding farmers'behaviour and promoting sustainable agroecological development.Based on the China Soil Dataset(HWSD V2.1),the minimum dataset for the evaluation of arable soil quality was constructed using principal component analysis,and combined with the grey-TOPSIS multi-objective evaluation model,the soil quality of arable land in the whole country(except Hong Kong,Macao and Taiwan)was evaluated.Geo-detectors were used to explore the degree of influence of external factors(mean annual precipitation,mean annual temperature,population density and GDP)on the soil quality of arable land.The results showed that:(1)the minimum data set could effectively reduce the correlation between indicator systems,and the improvement of the grey-TOPSIS method improved the accuracy of the arable land soil quality assessment to a certain extent.(2)According to the results of arable land soil quality as-sessment,the quality of arable land was classified into five grades,and from a national perspective,the quality of arable land soil was better in the middle and lower reaches of the Yangtze River and in South China,while the quality of arable land soil was worse in the Loess Plateau Zone,the Qinghai-Tibet Plateau Zone,and the Inner Mongolia Plateau Zone.(3)From the results of the geodetector,the average annual temperature and average annual precipitation together explained the quality of arable soil to a greater extent in 20 provinces,which was much greater than that explained by the other two factors together,and the interaction effect of the two factors was greater than that of a single factor on the quality of arable soil.In conclusion,average annual precipitation and average annual temperature were the main factors affecting the comprehensive quality of arable soils.

minimum data setgray-TOPSISsoil quality assessmentgeoprobe

刘加敏、陈敏、刘洋、周广华、张郁

展开 >

广州市城市规划勘测设计研究院有限公司,广东 广州 510060

广州市资源规划和海洋科技协同创新中心,广东 广州 510060

广东省城市感知与监测预警企业重点实验室,广东 广州 510060

最小数据集 灰色-TOPSIS 土壤质量评价 地理探测器

广东省重点领域研发计划资助广东省城市感知与监测预警企业重点实验室基金项目广州市资源规划和海洋科技协同创新中心项目广州市资源规划和海洋科技协同创新中心项目

2020B01011300092020B1212020192023B04103012023B04J0326

2024

天津农业科学
天津农业科学院信息研究所

天津农业科学

影响因子:0.705
ISSN:1006-6500
年,卷(期):2024.30(5)