首页|基于StarGAN的多属性风格图像生成的轻量化网络

基于StarGAN的多属性风格图像生成的轻量化网络

扫码查看
生成对抗网络已广泛用于图像到图像的翻译任务,其中多属性变换得到了越来越多的研究和应用,目前网络架构的参数多而且模型复杂,需要较高的计算能力和存储成本;网络压缩技术如蒸馏和剪枝,主要侧重于视觉识别任务,很少实现对生成任务的压缩。本文提出了一种利用 StarGAN 的低级和高级特征训练参数较少的学生网络(stuStarGAN)的方法,首先采用知识蒸馏对生成器进行蒸馏,并设计学生判别器让教师判别器蒸馏学生判别器;然后在学生网络设计中采用 skip-connection 进行跨模块的特征融合;接着增加内容损失函数保持生成图像和原图像的内容信息的一致性;最后采用深度可分离卷积进一步降低参数量并提高图像生成质量。在 CelebA 和 Fer2013 数据集上的实验结果表明:模型能够在保证生成质量不降低的情况下,用较少参数生成多属性风格的图像,可以方便地移植到多种应用场景。
Lightweight Network for Multi-Attribute Style Image Generation Based on StarGAN
The generation countermeasure network has been widely used in image-to-image translation tasks,in which multi-attribute transformation has been studied and applied increasingly.However,the existing network architecture has many parameters and complex models,requiring high computing and storage costs;the traditional network compression technology mainly focuses on visual recognition tasks,and rarely implements the compression of generated tasks.Therefore,in this article we propose a method stuStarGAN to train the student network with fewer parameters by learning the low-level and high-level features of StarGAN.In our proposed method,first,we distill the generator with knowledge distillation,and design the student discriminator so that the teacher discriminator distills the student discriminator;then in the student net-work design,skip-connection is used to provide cross module feature fusion;second,the content loss function is added to keep the consistency of the content information between the generated image and the original image;finally,depth separable convolution is used to further reduce the number of parameters and improve the quality of image generation.The experimen-tal results on benchmark datasets showed that the model could generate multi-attribute style images with fewer parameters without reducing the generation quality,making it easy to transplant to various application scenarios.

GANknowledge distillationskip-connectiondepth separable convolutioncontent loss

孙志伟、曾令贤、马永军

展开 >

天津科技大学人工智能学院,天津 300457

生成对抗网络 知识蒸馏 skip-connection 深度可分离卷积 内容损失

国家自然科学基金天津市自然科学基金

6197615618JCQNJC69500

2024

天津科技大学学报
天津科技大学

天津科技大学学报

影响因子:0.269
ISSN:1672-6510
年,卷(期):2024.39(1)
  • 27