首页|动态调查的自适应设计及数据质量评估

动态调查的自适应设计及数据质量评估

扫码查看
网络调查数据的海量涌入使得传统抽样调查的响应率显著下降,但网络样本的数据质量及可推断性受到质疑,而自适应抽样调查设计作为一种提高数据质量的有效手段,在网络调查实践中逐渐兴起.因此,在回顾和比较现有文献的基础上,系统介绍R统计量和偏R统计量的构建原理和估计方法,深入探讨它们在自适应调查设计中的关键作用,并设计数值模拟展示R统计量和偏R统计量的应用过程,验证其在提高数据采集效率和质量控制方面的实际效果.研究结果表明,在目标样本的辅助变量信息可用时,利用R统计量和偏R统计量指导自适应调查的数据收集过程,可以显著提升响应样本的代表性和估计的准确性,大幅度提升网络样本的可推断性和未来样本融合的效率.
Adaptive Design of Dynamic Surveys and Data Quality Assessment
The massive influx of data from online surveys has significantly reduced the response rates for traditional sampling surveys.However,the data quality and inferential validity of web samples have been questioned.Adaptive sampling survey design has emerged as an effective means to improve data quality in online survey practice.This paper,based on a review and comparison of existing literature,systematically introduced the construction principles and estimation methods of the R statistic and the partial R statistic.Then the paper deeply explored their critical roles in adaptive survey design,and designed numerical simulations to demonstrate the application process of these statistics,thereby verifying their practical effectiveness in enhancing data collection efficiency and quality control.The results indicated that,when auxiliary variable information for the target sample was available,using the R statistic and the partial R statistic to guide the data collection process in adaptive surveys could significantly enhance the representativeness of the response sample and the accuracy of estimations,substantially improving the inferential validity of web samples and the efficiency of future sample integration.

sampling techniquesadaptive survey designrepresentative responseR-statisticdata quality assessment

李志伟、米子川、李毅

展开 >

山西财经大学统计学院,山西太原 030006

山西财经大学信息学院,山西太原 030006

抽样技术 自适应调查设计 代表性响应 R统计量 数据质量评估

国家社会科学基金项目山西省高等学校科技创新计划平台项目

17BTJ0102022P0005

2024

统计学报

统计学报

ISSN:
年,卷(期):2024.5(4)
  • 1