首页|矩阵数据的分类预测方法

矩阵数据的分类预测方法

Classification Prediction Methods for Matrix Data

扫码查看
文章在矩阵正态分布下研究矩阵数据的参数估计及其分类方法.首先,基于低秩分解和矩阵正态分布的惩罚似然函数方法提出矩阵数据的参数估计和秩的自适应确定方法;其次,应用块坐标下降方法与增广拉格朗日乘子算法给出有效的迭代估计算法;然后,基于判别分析方法提出低秩分解下的分类预测规则;最后,通过大量数值模拟及卫星陆地资源数据和手写体数字的识别应用,验证了低秩估计方法对提高矩阵数据的估计和分类预测精度具有明显的效果.
This paper studies the parameter estimation and classification method of matrix data under the matrix normal dis-tribution.Firstly,based on the low-rank decomposition and the penalized likelihood function method of matrix normal distribution,a method for parameter estimation and adaptive determination of rank of matrix data is proposed.Then the block coordinate de-scent method and the augmented Lagrange multiplier algorithm are used to give an effective iterative estimation algorithm.Fur-thermore,based on the discriminant analysis method,the rule of classi fication and prediction under low-rank decomposition is proposed.Finally,through the application of a large number of numerical simulations and the recognition of satellite land resource data and handwritten digits,the low-rank estimation method is proved to be effective in improving the estimation and classification prediction accuracy of matrix data.

matrix normal distributionlow-rank decompositiondiscriminant analysisclassification prediction

汪钱荣、陈文钰、赵为华

展开 >

南通大学 数学与统计学院,江苏 南通 226019

矩阵正态分布 低秩分解 判别分析 分类预测

国家社会科学基金国家级大学生创新实践项目

22BTJ025202210304005Z

2024

统计与决策
湖北省统计局统计科学研究所

统计与决策

CSTPCDCSSCICHSSCD北大核心
影响因子:0.612
ISSN:1002-6487
年,卷(期):2024.40(6)
  • 17