首页|惩罚矩阵T混合模型及其在省域经济分类中的应用

惩罚矩阵T混合模型及其在省域经济分类中的应用

扫码查看
为充分考虑矩阵数据的特性和数据内部的关联性,文章基于矩阵T分布建立矩阵T混合模型及其惩罚模型来研究聚类问题。在矩阵T混合模型的似然函数上对均值矩阵分量施加自适应核范数低秩惩罚,应用ECM算法提出惩罚似然估计算法,同时提出了一种改进的BIC模型选择准则来选择最优的混合模型数量和调节参数,进而通过自适应核范数阈值自动实现低秩估计,实现准确聚类。最后,通过数值模拟研究及与已有方法的对比验证了该方法的有用性,且将所建立的惩罚混合模型应用于中国省域经济发展水平划分研究,得到了比较准确的聚类结果。
Penalized Matrix T Mixed Model and Its Application in Provincial Economic Classification
In order to fully consider the characteristics of the matrix data and the correlation within the data,this paper con-structs a matrix T mixed model based on the matrix T distribution and its penalized model to study clustering.A penalized likeli-hood estimation algorithm is proposed by applying an adaptive nuclear parametric low-rank penalty to the mean matrix compo-nents on the likelihood function of the matrix T mixed model and applying the ECM algorithm.At the same time,an improved BIC model selection criterion is also proposed to select the optimal number of mixed models and tuning parameters,which in turn auto-matically implements low-rank estimation to achieve accurate clustering by adaptive nuclear parametric thresholding.Finally,the numerical simulation study is compared with existing methods to verify the usefulness of the method;the developed penalized mixed model is applied to the study of the classification of economic development levels in Chinese provinces,and more accurate clustering results are obtained.

matrix T distributionmixed modeladaptive nuclear normECM algorithmsingular value threshold

李泽安、汪钱荣、赵为华

展开 >

南通大学人工智能与计算机学院,江苏 南通 226019

南通大学数学与统计学院,江苏 南通 226019

矩阵T分布 混合模型 自适应核范数 ECM算法 奇异值阈值

2025

统计与决策
湖北省统计局统计科学研究所

统计与决策

北大核心
影响因子:0.612
ISSN:1002-6487
年,卷(期):2025.41(1)