首页|基于泊松噪声和优化极限学习机的多因素混合学习方法及应用

基于泊松噪声和优化极限学习机的多因素混合学习方法及应用

扫码查看
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。
Multi-factor Hybrid Learning Method Based on Poisson Noise and Optimized Extreme Learning Machine and Its Application
Considering the characteristics of high fluctuation and intermittency of wind power data,this paper proposes a multi-factor hybrid learning approach based on complementary ensemble empirical mode decomposition with Poisson noise(CEEMDPN),modified snake optimizer(MSO)and extreme learning machine(ELM).Firstly,CEEMDPN is used to decompose the wind power sequence into subsequences.Then,the snake optimization algorithm is improved by introducing curve adaptive adjust-ment parameters.Finally,MSO-optimized ELM is utilized to predict and integrate each subsequence.In order to test the validity of the CEEMDPN-MSO-ELM model,the wind power data from Longyuan Power Group is used for ultra-short-term forecast.The empirical results are shown as below:The CEEMDPN algorithm can strengthen the main frequency part of wind power series and improve the decomposition accuracy,and MSO algorithm can well balance the optimization speed and convergence accuracy of the algorithm,so as to effectively improve the prediction performance of ELM model.The prediction accuracy and robustness of the proposed model are better than other models.

ultra-short-term wind power predictioncomplementary ensemble empirical mode decompositionsnake optimi-zation algorithmextreme learning machine

蒋锋、路畅、王辉

展开 >

中南财经政法大学 统计与数学学院,武汉 430073

中国科学院武汉文献情报中心,武汉 430071

中国科学院科技大数据湖北省重点实验室,武汉 430071

超短期风电功率预测 互补集合经验模态分解 蛇优化算法 极限学习机

2025

统计与决策
湖北省统计局统计科学研究所

统计与决策

北大核心
影响因子:0.612
ISSN:1002-6487
年,卷(期):2025.41(1)