首页|云平台的负载预测及弹性伸缩方案研究

云平台的负载预测及弹性伸缩方案研究

扫码查看
为提高云平台的性能和资源利用率,文章提出一种基于ARMA-CNN-SVR的负载预测组合模型,通过融合多种预测模型的优点,提高预测云平台资源使用情况的准确率.基于该负载预测组合模型,进一步优化了弹性伸缩策略,有效解决资源调整的滞后性问题,增强了云平台的主动性和智能性,显著提升了资源利用率和服务质量.
Load prediction and elastic scaling solutions for cloud platforms
To improve the performance and resource utilization rate of cloud platforms,this paper proposed a load prediction combination model based on ARMA-CNN-SVR,improved the accuracy of predicting cloud platform resource usage by integrating the advantages of multiple prediction models.Based on this load forecasting combination model,the paper further optimized the elastic scaling strategy,effectively solved the lag problem of resource adjustment,enhanced the initiative and intelligence of the cloud platform,and significantly improved resource utilization rate and service quality.

cloud platformload predictionelastic scalingcombination modelresource utilization rate

刘佳、王冰、王琛、刘振博

展开 >

中铁信弘远(北京)软件科技有限责任公司,北京 100844

中国铁路信息科技集团有限公司,北京 100844

云平台 负载预测 弹性伸缩 组合模型 资源利用率

中国国家铁路集团有限公司科技研究开发计划课题

P2021W009

2024

铁路计算机应用
中国铁道科学研究, 中国铁道学会计算机委员会

铁路计算机应用

影响因子:0.267
ISSN:1005-8451
年,卷(期):2024.33(2)
  • 12