首页|基于改进Mask R-CNN模型的铁路遥感影像房屋提取研究

基于改进Mask R-CNN模型的铁路遥感影像房屋提取研究

扫码查看
针对目前铁路建设预可行性研究阶段地形图制作存在的人工目视遥感解译效率低、生产周期长等问题,结合深度学习的特点和优势,对实例分割模型Mask R-CNN(Mask Region-based Convolutional Neural Network)进行改进,选用ResNeXt101作为其主干特征提取网络,并利用边缘提取算法进一步实现了遥感影像的自动矢量化提取.试验结果表明,改进后的模型在Mask AP50、Box AP50、Mask mAP、Box mAP等指标上均有明显的提升,可生成供铁路建设预可行性研究阶段拆迁费用计算的房屋矢量化影像,为该阶段的影像处理工作提供技术支撑.
House extraction from railway remote sensing images based on improved Mask R-CNN model
In response to the low efficiency of manual visual remote sensing interpretation and long production cycle in the production of topographic maps during the pre-feasibility study stage of railway construction,this paper combined the characteristics and advantages of deep learning to improve the instance segmentation model Mask R-CNN(Mask Region based Convolutional Neural Network).The paper selected ResNeXt101 as its backbone feature extraction network,and further implemented automatic vectorization extraction of remote sensing images using edge extraction algorithms.The experimental results show that the improved model has significant improvements in indicators such as Mask AP50,Box AP50,Mask mAP,and Box mAP.It can generate vectorized images of houses for the calculation of demolition costs in the pre-feasibility stage of railway construction,provide technical support for image processing work in this stage.

railway engineeringmodel improvementinstance segmentationMask R-CNNremote sensing image

黄一昕、方文珊、刘传朋

展开 >

中国铁路经济规划研究院有限公司 铁路工程技术标准所,北京 100038

铁道工程 模型改进 实例分割 Mask R-CNN 遥感影像

国家铁路集团有限公司科技研发计划

K2023T004

2024

铁路计算机应用
中国铁道科学研究, 中国铁道学会计算机委员会

铁路计算机应用

影响因子:0.267
ISSN:1005-8451
年,卷(期):2024.33(3)
  • 10