首页|基于YOLOv5s模型的地铁列车车顶关键部件检测算法研究

基于YOLOv5s模型的地铁列车车顶关键部件检测算法研究

扫码查看
针对目前地铁列车车顶部件检查主要依靠人工,劳动强度大、漏检率高等问题,提出了一种基于 YOLOv5s模型的地铁列车车顶关键部件检测算法.考虑现场算力不足的实际情况,对YOLOv5s模型进行轻量化设计,将YOLOv5s模型Backbone中的C3模块替换为Ghost_C3模块,并改用Ghost卷积取代YOLOv5s模型中的传统卷积,从而降低模型复杂度和计算量;为补偿轻量化设计带来的模型性能降低的损失,在Ghost_C3模块中引入CA注意力机制,加强对关键部件的特征感知,从而提升模型精度.实验结果表明,改进的YOLOv5s模型每秒传输帧数为 102.04 f/s,mAP为 97.98%,Pars为 4.47 MB,FLOPs为 10.2 GB,相比于原有YOLOv5s模型,mAP提升 1.36%,Pars减少 33.98%且FLOPs减少36.65%,所提算法能够为后续的地铁列车车顶关键部件服役状态辨识提供技术支撑.
Roof key components of metro vehicles detection algorithm based on YOLOv5 model
This paper proposed a key component detection algorithm for metro train roof based on YOLOv5s model to address the current problems of manual inspection,high labor intensity,and high missed detection rate in metro train roof components.Considering the practical situation of insufficient on-site computing power,the paper presented a lightweight design for the YOLOv5s model,replaced the C3 module in the YOLOv5s model Backbone with the Ghost-C3 module,and used Ghost convolution instead of traditional convolution in the YOLOv5s model to reduce model complexity and computational complexity.To compensate for the loss of model performance caused by lightweight design,the paper introduced a CA attention mechanism in the Ghost-C3 module to enhance feature perception of key components and improve model accuracy.The experimental results show that the improved YOLOv5s model has a frame rate of 102.04 f/s,mAP of 97.98%,Pars of 4.47 MB,and FLOPs of 10.2 GB.Compared with the original YOLOv5s model,mAP has increased by 1.36%,Pars has decreased by 33.98%,and FLOPs has decreased by 36.65%.The proposed algorithm can provide technical support for identifying the service status of key components on the roof of subway trains in the future.

YOLOv5slightweightattention mechanismroof of metro trainkey componentstarget detection

张慧飞、姜汇川、刘宁、李洪

展开 >

中国铁路通信信号上海工程局集团有限公司 广州分公司,广州 510663

南京理工大学 自动化学院,南京 210094

YOLOv5s 轻量化 注意力机制 地铁车顶 关键部件 目标识别

2024

铁路计算机应用
中国铁道科学研究, 中国铁道学会计算机委员会

铁路计算机应用

影响因子:0.267
ISSN:1005-8451
年,卷(期):2024.33(12)