首页|基于介电频谱技术的苹果品种识别

基于介电频谱技术的苹果品种识别

扫码查看
为快速、精准、无损地识别苹果品种,促进苹果产业快速发展,凸显高品质品种苹果优势,本研究采用介电频谱技术,以阿克苏地区 3 个品种的'红富士'苹果作为研究对象,基于LCR数字测试仪采集了 120 个苹果样本在 0~100 kHz的介电特频谱数据作为原始输入参数,在全频和连续投影算法优选频率条件下,利用误差反向传播网络与极限学习机 2 种方法建立了品种识别模型,并对模型精度进行了分析比较.结果表明,所建立的模型平均准确率均在 80%以上,频率优选条件下的 2 种模型分类准确率可达到 90%.然而由于以上模型方法存在无用信息,导致建立的模型稳定性较差,需要数据预处理、降维等步骤,操作耗时,且过程繁琐,致使分类结果稳定性较差.基于此,设计了一维卷积神经网络品种分类模型,与其他模型相比,一维卷积神经网络分类模型以原始参数作为输入,校正集与预测集中的平均分类准确率分别为 98.48%和 99.26%,模型稳定性更好,且可简化模型复杂度,改善苹果分类的准确性和稳定性,更适宜于苹果品种的识别.
Apple variety identification by dielectric spectrum technology
In order to quickly,accurately and non-destructive identify apple varieties,promote the rapid development of the apple industry,and highlight the advantages of high-quality apple varieties,this paper adopted dielectric spectrum technology for apple variety identification.Three varieties of'Red Fuji'apples from Aksu region were selected as the research objects,and 120 ap-ple samples were collected using LCR digital testing equipment with dielectric spectrum data at 0-100 kHz as the original input parameters.Under the optimal frequency conditions of full frequency and continuous projection algorithm,a variety recognition model was established by using two methods:error backpropagation network and extreme learning machine.Further,the accuracy of the methods was analyzed and compared.The results show that the average accuracy of the established models is above 80%,and the classification accuracy of the two models under frequency optimization conditions can reach 90%.However,the above model methods contain redundant information which undermines the stability of the model.Based on this,an one-dimensional convolutional neural network variety classification model was designed.Compared with other models,the new model uses raw pa-rameters as input,and the average classification accuracy in the correction set and prediction set is 98.48%and 99.26%,re-spectively.The new model has better stability,simplifies model complexity,improves the accuracy and stability of apple classifi-cation,and is more suitable for identifying apple varieties.

variety identificationAksu applesdielectric spectrumfeature frequencyclassification model

郝玉梅、花元涛、李文凤、刘清和

展开 >

塔里木大学信息工程学院,新疆 阿拉尔 843300

塔里木绿洲农业教育部重点实验室/塔里木大学,新疆 阿拉尔 843300

品种识别 阿克苏苹果 介电频谱 特征频率 分类模型

塔里木大学校长基金硕士项目塔里木大学大学生创新创业训练项目

TDZKSS20213122000033635

2024

塔里木大学学报
塔里木大学

塔里木大学学报

CHSSCD
影响因子:0.313
ISSN:1009-0568
年,卷(期):2024.36(3)
  • 9