首页|基于YOLOv8的库尔勒香梨皮孔检测研究

基于YOLOv8的库尔勒香梨皮孔检测研究

扫码查看
皮孔是香梨的重要结构,其分布规律对于揭示香梨失水机理以及优化保鲜贮藏策略具有重要的研究意义.当前皮孔分析主要依靠人工识别存在效率低下、误差大等问题,本研究采用YOLO系列最新的深度学习模型YOLOv8,对库尔勒香梨皮孔数据集进行训练,得到库尔勒香梨皮孔识别的模型,综合对比yolov8n,yolov8s,yolov8m 3 种模型在数据集训练中的性能表现,并通过测试集对模型进行评估.试验结果表明yolov8s在库尔勒香梨皮孔数据集训练中兼具较高的效率与优秀的性能,识别精确率高达 96.2%,召回率达到 86.1%,mAP50 达到 0.914,F1 分数高达 0.909.验证了基于yolov8s的库尔勒香梨皮孔检测系统的可行性,显示出模型良好的泛化能力.利用机器视觉完成香梨皮孔的检测,可以提高皮孔分析的效率,为进一步分析香梨皮孔分布规律提供技术支持.
Research on lenticels detection of Korla fragrant pear based on YOLOv8
Lenticels are an important structure of the pear,and the illustration of its distribution has an important research significance to reveal the mechanism of pear water loss and optimize the preservation and storage strategy.At present,the analysis of lenticels mainly relies on manual identification,which has the problems of low efficiency and high error,this study adopts the deep learning model YOLOv8 of YOLO series to train the lenticels data set of Korla fragrant pear,and obtains the model of lenticel identification of pear.The performance of yolov8n,yolov8s,yolov8m after training were comprehensively compared.Based on this,the model was evaluated by using the test data set.The experimental results show that yolov8s has both high efficiency and excellent performance in the training of lenticels data set,its recognition accuracy is 96.2%,the recall rate is up to 86.1%,the mAP50 is 0.914,and the F1 score is up to 0.909.The validity of lenticel detection system of the Korla fragrant pear based on the yolov8s was verified,showing the good generalization ability of the model.The use of machine vision to complete the identification of Korla fragrant pear lenticels can improve the efficiency of lenticel analysis and provide technical support for further analysis of the distribution law of lenticels.

Korla fragrant pearlenticelmachine visiondeep learningYOLOv8

倪鹏、牛浩、姜博远、菅立炎、张涛

展开 >

塔里木大学机械电气化工程学院/新疆维吾尔自治区教育厅普通高等学校现代农业工程重点实验室/南疆特色农林产物利用与装备兵团重点实验室,新疆 阿拉尔 843300

库尔勒香梨 皮孔 机器视觉 深度学习 YOLOv8

2024

塔里木大学学报
塔里木大学

塔里木大学学报

CHSSCD
影响因子:0.313
ISSN:1009-0568
年,卷(期):2024.36(4)