首页|基于Xgboost的铁路货运装卸作业时间预测

基于Xgboost的铁路货运装卸作业时间预测

扫码查看
传统方法推算货运装卸作业时间直接使用站细里的标准时间,难以刻画复杂因素影响下作业时间的变化情况,准确率较低。通过数据挖掘的方法,收集铁路综调信息系统记录的货运装卸作业相关数据,利用增强决策树模型Xgboost学习装卸作业相关影响因素对其作业时间的影响,实现货运装卸作业时间预测,对比基线模型准确率提升明显,能更有效辅助车流推算与运行图自动编制。
Loading and Unloading Time Estimation Based on Xgboost for Railway Freight Transport
The traditional method of loading and unloading time prediction of freight transport,which directly utilizes the standard time specified in the Detailed Instructions Governing Train Operation at Station,cannot properly characterize the time change under the impacts of complex factors,and achieves low prediction accuracy.This paper utilizes the data mining method to gather the relevant data on the loading and unloading time of freight transport from the railway integrated dispatching information system.It also utilizes the boosted decision tree model Xgboost to predict the loading and unloading time of freight transport.Compared with the reference model,the proposed model can achieve substantial improvement in prediction accuracy,and provide more effective support for traffic flow prediction and automatic drawing of train operation charts.

heavy haul railwayfreight transportloading and unloading timedecision treeXgboost

周瑾、王文斌、刘子扬、刘永壮

展开 >

北京全路通信信号研究设计院集团有限公司,北京 100070

中国神华能源股份有限公司,北京 100040

重载铁路 货运作业 装卸作业时间 决策树 Xgboost

中国神华重载铁路运输大数据分析平台研究项目

SHGF-22-02

2024

铁路通信信号工程技术
北京全路通信信号研究设计院有限公司

铁路通信信号工程技术

影响因子:0.313
ISSN:1673-4440
年,卷(期):2024.21(3)
  • 13