首页|基于YOLOv8算法的轨道信号灯检测研究

基于YOLOv8算法的轨道信号灯检测研究

Research on Signal Lamp Detection for Rail Transport Based on YOLOv8 Algorithm

扫码查看
为提高信号灯检测智能化水平,提出一种基于YOLOv8 算法的智能化信号灯检测方法.将自建信号灯数据集按 4:1 随机划分为训练集和验证集,经预处理后训练深度学习模型.结果显示模型能够收敛,能够端对端地实现信号灯位置及颜色的检测,对信号灯检测任务具有较好的应用潜力.
To improve the intelligence level of signal lamp detection,an intelligent signal lamp detection method based on YOLOv8 algorithm is proposed,which can randomly divide the self built signal lamp dataset into a training set and a validation set in a 4:1 ratio,and train a deep learning model after preprocessing.The results show that the model can converge and achieve end-to-end detection of signal lamp position and color,which has good potential for signal lamp detection tasks.

signal lamp detectionYOLOv8deep learningmean average precision(mAP)intelligent rail transport

晋云功

展开 >

通号国际控股有限公司,北京 100070

信号灯检测 YOLOv8 深度学习 平均精度均值(mAP) 智能化轨道交通

2024

铁路通信信号工程技术
北京全路通信信号研究设计院有限公司

铁路通信信号工程技术

影响因子:0.313
ISSN:1673-4440
年,卷(期):2024.21(9)
  • 15