首页|基于偏微分方程算法的期权定价方法研究

基于偏微分方程算法的期权定价方法研究

扫码查看
在现代金融理论研究领域,金融衍生产品定价问题的核心内容是期权定价问题.随着期权种类的增加和模型的扩展,研究期权定价方法尤为重要.对于不存在解析解的期权定价问题,采用偏微分模型方程的精准求解就成为解决该问题的关键一环.因此,本研究结合其他领域如流体力学中的数值求解方法,发展了一种基于间断有限元(DGM)的偏微分方程求解算法,并结合不同算例对算法进行了验证和分析,该算法的精准求解为期权的成功定价奠定了良好的基础.
Research on Option Pricing Method Based on Partial Differential Equation Algorithm
In the field of modern financial theory research,the core element of the financial derivative pricing problem is the option pricing problem.With the increase of option types and the extension of models,the study of option pricing methods is particularly important.For the option pricing problem that does not have an analytical solution,the accurate solution of the partial differential model equations becomes a key part of solving the problem.Therefore,this study develops a partial differential equation solving algo-rithm based on discontinuous finite element(DGM)by combining numerical solving methods in other fields such as fluid dynamics,and validates and analyses the algorithm by combining different examples,and the ac-curate solution of the algorithm lays a good foundation for the successful pricing of options.

FinanceOption PricingPartial Differential SolutionDiscontinuous Finite Element Method

夏志婕

展开 >

浙江工贸职业技术学院 国际商贸学院,浙江 温州 325003

金融 期权定价 偏微分求解 间断有限元方法

2024

特区经济
深圳市社会科学院

特区经济

CHSSCD
影响因子:0.257
ISSN:1004-0714
年,卷(期):2024.(8)