首页|基于大语言模型的致密砂岩储层测井含水饱和度预测

基于大语言模型的致密砂岩储层测井含水饱和度预测

扫码查看
致密砂岩储层测井含水饱和度预测是油气藏储层评价和产量预测的关键步骤,应用机器学习模型预测含水饱和度在一定程度上缓解了常规方法预测误差大的问题.但是现有的机器学习方法通常使用有限的测井数据从头开始训练模型,导致模型能力受限,进而阻碍了它的泛化能力.为此,基于大语言模型(LLMs)出色的泛化性能及丰富的知识信息,引入LLMs进行储层测井含水饱和度预测,提出了 一种基于真实关系及表格Transformer网络(REaLTabFormer)增强的LLMs对齐框架模型(RTF-LLA),最后进行了实验对比验证.研究结果表明:①RTF-LLA模型由数据增强、知识蒸馏和跨模态对齐3个核心模块构成;②数据增强模块以原始测井数据为基础,利用REaLTabFormer捕获测井参数与储层物性参数间的内在关系,生成了高信息量的测井数据;③知识蒸馏模块从LLMs提取主要的知识信息,指导测井数据与LLMs文本知识进行跨模态对齐,并赋予模型准确预测储层测井含水饱和度的能力;④跨模态对齐模块通过词元对齐、特征对齐和序列对齐,有效地降低了模型对储层含水饱和度的预测误差.结论认为:①RTF-LLA模型在S气田储层饱和度实验评价中的平均绝对误差和均方根误差分别为1.332和2.207,相较于其他主流机器学习算法至少降低了 3.310和3.174;②RTF-LLA模型可为小样本测井资料储层含水饱和度准确预测提供有效技术支撑,为储层测井含水饱和度预测提供了新思路、新方法.
Prediction of water saturation in tight sandstone reservoirs from well log data based on the large language models(LLMs)
Prediction of the water saturation in well logging is a key step in the reservoir evaluation and production prediction of tight sand oil and gas reservoirs.The application of machine learning models to predict water saturation has,to some extent,alleviated the problem of large prediction errors in conventional methods.However,existing machine learning methods usually begin model training with limited logging data,which restricts the capacity of the model,hindering its generalization ability.Based on the excellent generalization performance and rich knowledge information of Large Language Models(LLMs),this paper introduces LLMs to predict reservoir water saturation.Then,a realistic relational and tabular transformer network(REaLTabFormer)enhanced LLMs alignment framework model(RTF-LLA)is established and experimentally compared and verified.And the following research results are obtained.First,the RTF-LLA model consists of three core modules,i.e.,data enhancement,knowledge distillation and cross-modal alignment.Second,the data enhancement module captures the intrinsic relationships between well logging parameters and reservoir physical parameters to generate large-information well logging data by using the REaLTabFormer,based on original well logging data.Third,the knowledge distillation module extracts the main knowledge information from LLMs to guide the cross-modal alignment of well logging data and LLMs text knowledge and endow the model with the ability to predict reservoir water saturation accurately.Fourth,the cross-modal alignment module effectively reduces the prediction error of reservoir water saturation through lexical unit alignment,feature alignment and sequence alignment.In conclusion,when the RTF-LLA model is used for the experimental evaluation of reservoir saturation in S Gas Field,its mean absolute error(MAE)and root mean square error(RMSE)are 1.332 and 2.207,respectively,which are at least 3.310 and 3.174 lower than those by other mainstream machine learning algorithms.What's more,the RTF-LLA model can provide effective technical support for the accurate prediction of the reservoir water saturation with small sample logging data,as well as a new idea and a method for the prediction of reservoir water saturation.

Large Language Models(LLMs)Cross-modal alignmentTight sandstone reservoirWater saturation prediction in well loggingGeneralization

武娟、罗仁泽、雷璨如、殷疆、陈星廷

展开 >

西南石油大学地球科学与技术学院

油气藏地质及开发工程全国重点实验室·西南石油大学

西南石油大学电气信息学院

西北大学地质学系

大陆动力学国家重点实验室·西北大学

展开 >

大语言模型 跨模态对齐 致密砂岩储层 测井含水饱和度预测 泛化能力

四川省科技厅项目

2024YFHZ0158

2024

天然气工业
四川石油管理局 中国石油西南油气田公司 中国石油川庆钻探工程公司

天然气工业

CSTPCD北大核心EI
影响因子:2.298
ISSN:1000-0976
年,卷(期):2024.44(9)
  • 19