首页|可解释机器学习在油气领域人工智能中的研究进展与应用展望

可解释机器学习在油气领域人工智能中的研究进展与应用展望

扫码查看
人工智能作为战略性新兴产业及新质生产力正迅速地渗透入油气领域,并有望成为行业发展的新引擎和制高点."黑盒"的机器学习模型缺乏透明度和可解释性,导致现有机器学习方法在油气领域的认可度和信任度不高,制约了以机器学习为核心的人工智能在油气田中的融合和发展.为此,系统介绍了可解释机器学习方法在油气田勘探开发过程的研究现状,阐述了机器学习模型的可解释性是促进油气领域人工智能大规模应用的关键,以及事后可解释方法在油气机器学习方法上的局限性,并对技术的应用进行了展望.研究结果表明:①利用Shapley加性解释(SHAP)和模型无关局部解释(LIME)等事后可解释方法进行煤层气产能主控因素实例验证,指出了可解释的油气田特征指标还不足以完全指导可解释模型的构建和分析,需要基于本质可解释思路建立符合油气田勘探开发自身特点的本质可解释机器学习方法;②利用机理模型、因果推断和反事实解释等本质可解释方法,分析油气田数据和模型参数之间的因果关系,构建了本质可解释机器学习方法;③选取典型煤层气压裂数据进行产能预测实例验证,发现因果推断能有效挖掘地质参数、施工参数和产能之间的本质关系,且基于因果关系建立的机器学习模型可以实现预测泛化性能提升.结论认为,基于事后可解释和本质可解释机器学习方法不仅是未来油气领域人工智能发展的必然趋势,而且是解决人工智能在油气领域现场落地的"瓶颈"问题及关键技术.
Research progress and application prospect of interpretable machine learning in artificial intelligence of oil and gas industry
Artificial intelligence,as a strategic emerging industry and a new quality productivity,is rapidly penetrating into the oil and gas industry,and is expected to become a new engine and commanding elevation for the development of the industry.The machine learning model of"black box"is lack of transparency and interpretability,which leads to low acceptance and trust of existing machine learning methods in the oil and gas industry and restricts the fusion and development of the artificial learning with machine learning as the core in oil and gas fields.In this paper,the research status of interpretable machine learning method in the process of oil and gas field exploration and development is introduced systematically.It is indicated that the interpretability of machine learning model is the key to promote the large-scale application of artificial intelligence in the oil and gas industry.Then,the limitations of the post-hoc interpretability method in oil and gas machine learning method are illustrated,and the application of the technology is predicted.And the following research results are obtained.First,the post-hoc interpretability methods such as Shapley Additive Explanation(SHAP)and Local Interpretable Model-agnostic Explanation(LIME)are used for the case verification of the main control factors of CBM productivity.It is suggested that the interpretable oil and gas field characteristic indexes are inadequate to fully guide the construction and analysis of interpretable model.Therefore,an intrinsic interpretability machine learning method which is accordant with the characteristics of oil and gas field exploration and development itself shall be established based on the idea of intrinsic interpretability.Second,the intrinsic interpretability methods such as mechanism model,causal inference,and counterfactual explanation are used to analyze the causality between oil and gas field data and model parameters,and then the intrinsic interpretability machine learning method is constructed.Third,the typical CBM fracturing data is selected for the case verification of productivity prediction.It is indicated that causal inference can effectively mine the intrinsic relationships between geological parameters,construction parameters and production capacity,and the machine learning model established based on causality can improve the generalization of prediction.In conclusion,the machine learning method based on post-hoc interpretability and intrinsic interpretability is not only the inevitable development trend of artificial intelligence in the oil and gas industry in the future,but also the bottlenecks and key technology for the field application of artificial intelligence in the oil and gas industry.

Oil and gas field exploration and developmentArtificial intelligenceMachine learningInterpretable machine learningPost-hoc interpretabilityIntrinsic interpretability

闵超、文国权、李小刚、赵大志、李昆成

展开 >

西南石油大学理学院

西南石油大学人工智能研究院

油气藏地质及开发工程全国重点实验室·西南石油大学

油气田勘探开发 人工智能 机器学习 可解释机器学习 事后可解释 本质可解释

四川省科技创新苗子工程项目成都市国际合作项目

20220342020-GH02-00023-HZ

2024

天然气工业
四川石油管理局 中国石油西南油气田公司 中国石油川庆钻探工程公司

天然气工业

CSTPCD北大核心EI
影响因子:2.298
ISSN:1000-0976
年,卷(期):2024.44(9)
  • 35