首页|Machine learning in metal-ion battery research:Advancing material prediction,characterization,and status evaluation

Machine learning in metal-ion battery research:Advancing material prediction,characterization,and status evaluation

扫码查看
Metal-ion batteries(MIBs),including alkali metal-ion(Li+,Na+,and K+),multi-valent metal-ion(Zn2+,Mg2+,and Al3+),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical energy storage.However,the performance of MIBs is significantly influenced by numerous variables,resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement.Machine learning(ML),with its capability to solve intricate tasks and perform robust data processing,is now catalyzing a revolutionary transformation in the development of MIB materials and devices.In this review,we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years.We present an extensive overview of existing algorithms,elucidating their details,advantages,and limitations in various applications,which encompass electrode screening,material property prediction,electrolyte formulation design,electrode material characterization,manu-facturing parameter optimization,and real-time battery status monitoring.Finally,we propose potential solutions and future directions for the application of ML in advancing MIB development.

Metal-ion batteryMachine learningElectrode materialsCharacterizationStatus evaluation

Tong Yu、Chunyang Wang、Huicong Yang、Feng Li

展开 >

Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,Liaoning,China

Department of Physics and Astronomy,University of California Irvine,Irvine,CA92697,USA

School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,Liaoning,China

国家自然科学基金国家自然科学基金国家自然科学基金国家重点研发计划国家重点研发计划中国科学院战略规划重点项目中国博士后科学基金China National Postdoctoral Program for Innovative Talents

5220336452188101520201050102021YFB38003002022YFB3803400XDA220106022022M713214BX2021321

2024

能源化学
中国科学院大连化学物理研究所 中国科学院成都有机化学研究所

能源化学

CSTPCDEI
影响因子:0.654
ISSN:2095-4956
年,卷(期):2024.90(3)
  • 146