首页|优化的AI断裂识别技术在川中北斜坡的应用

优化的AI断裂识别技术在川中北斜坡的应用

扫码查看
最新研究表明四川盆地川中北斜坡地区走滑断裂发育,具有断面陡直、断距小、断裂不明显的特征,由于目的层下古生界埋藏较深,地震资料信噪比低,难以对走滑断裂进行快速精确地识别.为此,采用了优化后的AI断裂识别技术:①对地震数据进行背景建模,求取局部背景能量数据与原始地震数据残差,增强地层背景反射之下微小断裂地震信息的显现;②进行构造导向滤波,提高地震数据的信噪比,使地震数据同相轴的连续性和断裂特征更加明显;③进行AI断裂识别.应用结果表明:不仅大大节省了人工解释的时间,还具有较强抗噪性,能较好地压制地震数据的冗余信息,提高信噪比,识别出常规地震属性难以识别的微小断裂,更好地预测走滑断裂的展布特征及交割关系.
Optimized AI identification for faults in northern slope,central Sichuan Basin
The latest studies suggest strike-slip faults developed in northern slope of central Sichuan Basin.With steep plane and small throw,these faults are not apparent.It is hard to rapidly and accurately identify them running through targets of the deep-seated Lower Paleozoic due to low signal-to-noise ratio(SNR)of seismic data.So,an optimized AI technique has been used for fault identification.Firstly,background simulation is performed to obtain the residual error between local background energy data and original seismic data,thereby enhancing the signal manifest of minor faults beneath stratigraphic reflection.Secondly,the SNR is improved by means of structure-oriented filtering which makes both continuity of seismic event and fault features more pronounced.Finally,AI technique is used for this identification.Results demonstrate that this technique is not only greatly time saving in artificial interpretation,but ex-hibits strong noise resistance for redundant suppression with effect,improves the SNR,identifies the minor faults that are difficult to be detected using conventional attributes,and makes the prediction on strike-slip faults'distribution and intersection even better.

Central Sichuan paleoupliftNorthern slopeLower PaleozoicStrike-slip faultAI fault identificationOptimizationMi-nor fault

侯宇、刘定锦、雷开强、杨飞、黎枫佶、陈华、张雨濛、苟思、司若凡

展开 >

中国石油集团东方地球物理勘探公司西南物探研究院 四川成都 610213

川中古隆起 北斜坡地区 下古生代 走滑断裂 AI断裂识别 优化 微小断裂

中国石油东方公司科研项目

11-03-2021

2024

天然气勘探与开发
中油西南油气田公司勘探开发研究院

天然气勘探与开发

影响因子:0.543
ISSN:1673-3177
年,卷(期):2024.47(4)
  • 25