首页|参数优化方法对微生物模型预测土壤有机碳时空演变的影响

参数优化方法对微生物模型预测土壤有机碳时空演变的影响

扫码查看
准确把握土壤有机碳(SOC)的时空演变规律对于土壤资源的高效持续利用、发挥土壤生态系统服务功能,以及应对气候变化等均具有重要意义.以江苏省南部为研究区,以明确表达微生物分解作用的微生物模型 MIMICS 为对象,以模型参数敏感性分析为切入点,分析了不同参数优化方法对MIMICS模型预测苏南农田表层(0~20 cm)SOC时空演变动态的影响.结果表明,批处理和点对点两种参数优化方法下,MIMICS模型均能较好地模拟1980-2015年苏南农田表层SOC密度先增加后减少的总体趋势;采用考虑模型参数空间异质性的点对点参数优化方法时,MIMICS模型预测精度最高,其预测误差(RMSE)较采用默认参数值时分别降低 22.2%(2000 年独立验证)和 14.7%(2015 年独立验证),但 2015 年SOC密度预测精度依然偏低(R2 = 0.13,RMSE = 1.22 kg·m-2).上述结果表明进一步改进微生物模型的结构、提高模型输入数据的精度及分辨率,将是微生物模型建模区域尺度SOC时空动态所面临的重要挑战.
Effects of Microbial Model Parameter Optimization on the Spatiotemporal Dynamics Modelling of Soil Organic Carbon
[Objective]Soil organic carbon(SOC)forms the basis of soil fertility,food production,and soil health,and plays a key role in climate change via mediating greenhouse gas emissions.Consequently,accurate characterization of SOC spatiotemporal dynamics is extremely important for the sustainable management of soil resources,ecosystem stability maintenance,and mitigation and adaptation to climate change.[Method]A total of 399,413,and 407 cropland topsoil(0~20 cm)SOC data in 1980,2000,and 2015 were collected from the southern Jiangsu Province of China,respectively,and the microbial-explicit SOC model MIMICS(Microbial-Mineral Carbon Stabilization)was used to model the spatiotemporal dynamics of SOC.The Sobol global sensitivity analysis was applied to identify the sensitive parameters of the MIMICS model,and then,two-parameter optimization schemes,one batch(using all SOC observations in a batch mode to optimize the parameters)and site-by-site(using SOC observations at individual sites to optimize the parameters site by site),were used to optimize the sensitive parameters of the MIMICS model through Markov Chain Monte Carlo(MCMC)approach,respectively.The coefficient of determination(R2),root mean squared error(RMSE),and mean absolute error(MAE)that were calculated from the independent validation of SOC in 2000 and 2015 were used to compare the performance of different parameter optimization schemes.[Result]Results show:(1)The net increment of SOC density between 1980 and 2000 was 0.89 kg·m-2,while the net decrement was 0.44 kg·m-2 between 2000 and 2015,representing a net increment of 0.45 kg·m-2 over the period of 1980-2015;(2)The MIMICS model with parameters optimized by either One batch or site-by-site method can represent the overall trends in topsoil SOC dynamics during the period of 1980-2015,but the model with parameters optimized by the site-by-site method presents more local details on the variability of the SOC change rate;(3)Compared with the default parameter values and the One-batch optimized parameter values,the MIMICS model with site-by-site optimized parameter values had the best performance in modeling the spatiotemporal dynamics of SOC in the study area,with the RMSE decreasing by 22.2%(the independent validation in 2000)and 14.7%(the independent validation in 2015)in comparison with the MIMICS model with default parameter values.Yet,its prediction accuracy in 2015 was still relatively low(R2 = 0.13,RMSE = 1.22 kg·m-2).[Conclusion]The optimization of sensitive parameters can improve the space-time SOC prediction accuracy of the MIMICS model,and the representation of local details on the spatiotemporal patterns of SOC dynamics.Although the MIMICS model with the spatially heterogeneous parameter values optimized by the site-by-site method had the best performance,its prediction accuracy in 2015 was still relatively low,which indicated that the MIMICS model still has limitations in representing the responses of SOC to anthropogenic activities such as changes in land use and agricultural management practices.Thus,further improvement of the MIMICS model structure and enhancing the spatiotemporal resolution of model input data are still significant challenges for regional scale modeling of SOC spatiotemporal dynamics through microbial-explicit SOC models.

Soil organic carbonMicrobial modelSensitivity analysisOptimized parameters

张秀、谢恩泽、陈剑、彭雨璇、严国菁、赵永存

展开 >

土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008

中国科学院大学,北京 100049

土壤有机碳 微生物模型 敏感性分析 参数优化

国家自然科学基金

41971067

2024

土壤学报
中国土壤学会

土壤学报

CSTPCD北大核心
影响因子:2
ISSN:0564-3929
年,卷(期):2024.61(1)
  • 1
  • 39