首页|基于稀土氧化物示踪法探究冻融循环对黑土团聚体周转的影响

基于稀土氧化物示踪法探究冻融循环对黑土团聚体周转的影响

Effects of Freeze-thaw Cycles on Soil Aggregates Turnover in Mollisols Using Rare Earth Oxides as Tracers

扫码查看
为区分土壤团聚体形成和破碎过程,阐明冻融循环对黑土土壤结构的影响,本文利用稀土氧化物(REOs)示踪技术,通过室内模拟试验,探究不同初始含水量(50%田间持水量(T50)vs.100%田间持水量(T100))和冻融循环次数(0次、3次、6次、12次和20次)对团聚体粒径分布、平均质量直径(MWD)以及团聚体周转过程的影响.结果表明:同一初始含水量下,随着冻融循环次数的增加,MWD、>0.25 mm和<0.053 mm团聚体含量显著降低,0.25~0.053 mm团聚体含量显著增加(P<0.05).6次冻融循环后,T50处理下的MWD显著高于T100处理(P<0.05),5~2 mm和<0.25 mm团聚体含量无显著差异.除5~2 mm团聚体外,冻融循环处理下,相邻粒级团聚体之间周转更为激烈.在同一冻融循环次数下,5~2 mm团聚体向0.25~0.053 mm团聚体的破碎量在T100处理下显著高于T50处理(P<0.05).冻融循环促进了>0.25 mm团聚体的破碎和<0.053 mm团聚体的团聚,表现为0.25~0.053 mm团聚体的累积.冻融循环过程中,MWD与各粒径团聚体相对形成量呈显著正相关,与其相对破碎量呈显著负相关(P<0.05).随着冻融循环次数的增加,各粒径团聚体周转时间显著增加(P<0.05).同一冻融循环次数下,>0.25 mm团聚体的周转时间高于<0.25 mm团聚体,T100处理下的团聚体周转时间显著高于T50处理(P<0.05).综上所述,冻融循环次数和土壤初始含水量通过影响团聚体形成和破碎过程改变土壤结构的稳定性.本研究结果可为进一步探究冻融循环下黑土土壤结构变化提供理论依据.
[Objective]To elucidate the effects of freeze-thaw cycles and initial water content on soil structural stability,rare earth oxides(REOs)were used as tracers to separate soil aggregates formation and breakdown processes.[Method]REOs-labelled soil was reformed and investigated herein.Two initial water contents(50% field water holding capacity(T50)vs.100% field water holding capacity(T100))and five freeze-thaw cycles(0,3,6,12 and 20 cycles)were involved in the simulation experiments.Soil aggregates distribution,mean weight diameter(MWD),and the aggregate transformation processes were measured accordingly.[Result]The results showed that freeze-thaw cycles significantly reduced MWD,>0.25 mm aggregates and <0.053 mm aggregates proportions,but increased the contents of 0.25~0.053 mm aggregates under the same initial water content.After 6 freeze-thaw cycles,MWD was significantly higher under T50 compared with that under T100(P<0.05),but there were no significant differences between the contents of 5~2 mm and <0.25 mm aggregates.Except for 5~2 mm aggregates,more intensive transformation between neighboring size aggregates was observed during the whole simulation experiments.Under the same freeze-thaw cycles,the transformation proportions from 5~2 mm to 0.25~0.053 mm aggregate were significantly higher under T100 compared with T50 treatment(P<0.05).The freeze-thaw cycles promoted the breakdown of >0.25 mm aggregates and aggregation of <0.053 mm aggregales,thas leading to the accumulation of 0.25~0.053 mm aggregales both under T50 and T100 treatments.Also,MWD was significantly positively correlated with the relative formation of soil aggregates and negatively related with the relative breakdown of soil aggregates(P<0.05).Soil aggregates turnover time remarkably increased with the freeze-thaw cycles(P<0.05).Aggregate turnover time of >0.25 mm aggregates was higher than that of <0.25 mm aggregates.Comparatively,the aggregate turnover time was significantly higher under T100 than that under T50 with the same freeze-thaw cycle(P<0.05).[Conclusion]The freeze-thaw cycles and soil initial water content significantly affect the soil structural stability by laying affects on aggregate formation and breakdown processes.The results will provide a theoretical basis for further exploration of the structural changes in Mollisols under freeze-thaw cycles.

Freeze-thaw cyclesAggregate turnoverMollisolsRare earth oxidesSoil aggregate stability

刘雅俊、刘帅、甘磊、张中彬、彭新华

展开 >

桂林理工大学广西岩溶地区水污染控制与用水安全保障协同创新中心,广西桂林 541004

中国科学院南京土壤研究所,南京 210008

冻融循环 团聚体周转 黑土 稀土氧化物 团聚体稳定性

国家重点研发专项国家自然科学基金项目江苏省卓越博士后计划中国博士后科学基金项目

2021YFD1500801422073602022ZB4662022M723238

2024

土壤学报
中国土壤学会

土壤学报

CSTPCD北大核心
影响因子:2
ISSN:0564-3929
年,卷(期):2024.61(4)
  • 14