首页|长期大气CO2浓度升高对大豆磷吸收及根际磷转化的影响

长期大气CO2浓度升高对大豆磷吸收及根际磷转化的影响

扫码查看
磷(P)作为第二重要的植物营养元素,能够调节作物对气候变化的适应性.东北不同地区黑土有机质含量存在着较大差异,对作物营养吸收产生较大影响.然而,长期大气CO2 浓度升高对不同有机质含量黑土大豆生长、土壤磷组分以及相关微生物机制的影响鲜有研究.本研究利用开顶式生长室(OTC)重点探究了气候变化对不同有机质黑土大豆根际土壤磷组分和相关磷转化微生物功能基因的影响.结果表明,不同有机质含量的黑土大豆磷吸收对长期大气CO2 浓度升高的响应一致,既先升高后降低.然而,大豆根际磷组分的响应存在差异性.大气CO2 浓度升高降低了高有机质黑土中大豆根际NaHCO3-Po含量,但增加了低有机质黑土中大豆根际有机磷库(NaHCO3-Po和NaOH-Po)的含量,而降低了无机磷库(NaOH-Pi)的含量.同时,大气CO2 浓度升高使高有机质黑土根际土壤基因拷贝数增加 53.0%,低有机质黑土中大豆根际土壤基因拷贝数增加 44.4%.因此,长期气候变化条件下,高有机质含量黑土通过有机磷矿化功能微生物来满足大豆对磷素的需求;而在低有机质含量黑土中,长期高CO2 浓度主要影响无机磷组分以及相关功能基因.
Long-term effects of elevated atmospheric CO2 concentration on soybean phosphorus acquisition and soil phosphorus transformation in the rhizosphere of soybean
Phosphorus(P),the second important plant nutrient,regulates crop adaptation to climate change.The organic matter content of Mollisols in different areas of Northeast China is quite different,which greatly influences crop nutrient absorption.How-ever,few studies have investigated the long-term effects of elevated CO2 concentration on soybean growth,soil phosphorus fraction and relevant microbial mechanisms with different organic matter content of Mollisols.The study used open-top growth chambers to mainly investigate the effects of elevated CO2 on soil phosphorus fractions and relevant functional genes in Mollisols with different organic matter content.The results showed that the response of P uptake of soybean to the long-term elevated CO2 was the same change with different organic matter content,increasing first and then decreasing,while differences existed on P fractions in rhizo-sphere of soybean.Elevated CO2 decreased NaHCO3-Po fraction in high-SOM(H-SOM)soil,however,elevated CO2 favored the accumulation of organic fraction(NaHCO3-Po and NaOH-Po),reduced inorganic fraction(NaOH-Pi)in low-SOM(L-SOM)soil.In addition,elevated CO2 concentration increased the copy numbers of phoC by 53.0%in H-SOM,but increased the copy numbers of pstS by 44.4%in L-SOM.Therefore,under long-term climate change,soybean can meet the P demand through organic P mineraliza-tion by soil microorganisms in H-SOM,while inorganic P and relevant functional genes are affected in L-SOM.

climate changeorganic contentphosphorus fractionphosphatase activityphosphorus functional genes

郭丽丽、李彦生、于镇华、王光华、刘晓冰、张锦源、吴俊江、王国兵、金剑

展开 >

河南省科学院地理研究所 土地科学研究中心, 河南 郑州 450052

中国科学院东北地理与农业生态研究所黑土区农业生态重点实验室, 黑龙江 哈尔滨 150081

黑龙江省农业科学院大豆研究所 农业农村部大豆栽培重点实验室 黑龙江省大豆栽培重点实验室, 黑龙江 哈尔滨 150086

气候变化 有机质含量 磷组分 磷酸酶活性 磷转化功能基因

黑龙江省自然科学重点项目河南省科学院科研启动项目中国科学院战略性先导科技专项河南省科学院基本科研项目

ZD2021D001231801032XDA28020201220610196

2024

土壤与作物
中国科学院东北地理与农业生态研究所

土壤与作物

CSTPCD
影响因子:0.623
ISSN:2095-2961
年,卷(期):2024.13(1)
  • 1
  • 48