首页|从算法提出视角看国家学术影响力差异——以自然语言处理领域算法为例

从算法提出视角看国家学术影响力差异——以自然语言处理领域算法为例

扫码查看
随着数字技术发展,算法在不同领域的重要性日益提升,但少有论文探讨不同国家在算法研发工作中的表现。文章以自然语言处理领域为例,利用机器学习方法抽取该领域学术论文提及的算法,获得领域中的完整算法集合;收集所有算法的提出国家及相关信息,从算法数量和质量等维度分析不同国家的学术影响力。研究发现:在算法数量上,各国差异明显,中美是提出算法的主力军;在算法质量上,美国在综合被引上表现出色,各国平均被引差距较小,澳大利亚、乌克兰等排名明显提升;综合考虑算法数量和质量,将不同国家的学术影响力分为4种类型,从中发掘出数量、质量表现皆优的模范型国家,以及在单一维度影响力高的潜力型国家。文章为国家、机构、个人的学术影响力评价提供了新视角,验证了利用细粒度知识成果进行国家学术影响力评价的可能性,能为算法创新过程中各国之间的学术合作提供参考。
Exploring Differences in Academic Influence of Countries Based on Algorithm Development——A Case Study of Algorithms in the Field of Natural Language Processing
With the development of digital technology,algorithms have become increasingly important in various fields,but few papers have examined the performance of different countries in their algorithm development efforts.Taking the field of Natural Language Processing as an example,this article uses machine learning methods to extract the algorithms mentioned in the academic papers and obtain the complete set of algorithms.It collects the proposed countries and related information of all algorithms,and analyzes the academic influence of different countries in terms of algorithms,both quantitatively and qualitatively.The results show that there are obvious differences between countries given the number of algorithms,and that China and the United States are the main force in proposing algorithms;as for the quality of algorithms,the United States performs well in terms of comprehensive citations,the gap between the average citations of each country is small,and the rankings of Australia and the Ukraine are improved significantly.Taking into account the number and quality of algorithms,the academic influence of different countries can be divided into four types,from which exemplary countries with superior quantitative and qualitative performance can be identified,as well as potential countries with high influence in a single dimension.This paper provides a new perspective for evaluating the academic influence of countries,institutions,and individuals,and verifies the possibility of using fine-grained knowledge to evaluate a country's academic influence,which provides a reference for the academic cooperation between countries in the process of algorithmic innovation.

algorithm entitiesacademic influenceimpact assessmentcountry differences

王玉琢、李晓婷、乔红、邢瀚文、章成志

展开 >

安徽大学管理学院

南京理工大学经济管理学院

南京理工大学计算机学院

算法实体 学术影响力 影响力评估 国别差异

国家自然科学基金江苏省社会科学基金重点项目

7207411320TQA001

2024

图书馆论坛
广东省立中山图书馆

图书馆论坛

CSTPCDCSSCICHSSCD北大核心
影响因子:1.864
ISSN:1002-1167
年,卷(期):2024.44(5)
  • 42