首页|期刊下载与被引次数关系及预测模型

期刊下载与被引次数关系及预测模型

扫码查看
文章以图书馆、情报与文献学CSSCI来源期刊为例,综合采用面板数据模型、面板变系数模型、面板门槛模型研究文章下载与被引之间的关系,并采用BP人工神经网络基于下载次数预测被引次数。研究表明:面板数据固定效应模型可有效分析下载次数与被引次数关系;论文被引次数主要受滞后2年的下载次数影响;不同期刊下载次数对被引次数的影响呈现趋同趋势;下载次数对被引次数的影响呈现非线性门槛特征;采用BP人工神经网络模型可以根据下载次数较好地预测被引次数;部分学科期刊可采用下载次数进行预评价,以提高评价的时效性。
The Relationship between Downloads and Citations for Academic Journals and Its Prediction Model
Taking CSSCI journals of Library&Information Science as an example,this paper comprehensively adopts the panel data model,the panel variable coefficient model and the panel threshold model to study the relationship between downloads and citations,and uses the BP artificial neural network to predict the citations based on the number of downloads.The results show that:The panel data fixed-effects model can be used to effectively analyze the correlation between downloads and citations;The citation counts of papers are mainly affected by the number of downloads with a lag of 2 years;The influence of downloads on the citations in different journals shows a tendency of convergence with a nonlinear threshold characteristic;Adopting the BP artificial neural network model can better predict the number of citations based on downloads;The download counts of some journals in certain disciplines can be used to conduct pre-evaluations so as to improve the timeliness of the evaluation.

downloadscitationspredictionacademic journalspanel thresholdBP neural network

俞立平、胡甲滨

展开 >

浙江工商大学统计与数学学院

下载次数 被引次数 预测 学术期刊 面板门槛 BP神经网络

国家社会科学基金后期资助项目

21FTQB016

2024

图书馆论坛
广东省立中山图书馆

图书馆论坛

CSTPCDCSSCICHSSCD北大核心
影响因子:1.864
ISSN:1002-1167
年,卷(期):2024.44(5)
  • 31