首页|融合ReAct模式的图书馆大语言模型知识服务系统构建

融合ReAct模式的图书馆大语言模型知识服务系统构建

扫码查看
文章聚焦大语言模型时代图书馆知识服务,以家谱知识内容为实验对象,探索融合ReAct模式的图书馆大语言模型知识服务系统构建路径。实验通过将RDF数据转化为自然语言文本构建数据集,运用ReAct模式推动大语言模型执行数据查询、多语种查询、资源检索、资源推荐和资源解读等任务,展现融合ReAct模式下大语言模型在自然语言处理和上下文理解方面的能力,实验也揭示了包括多语种问题理解上的挑战、模糊查询结果一致性、背景知识补充方面的改进空间等问题。文章对大语言模型时代图书馆知识服务的创新发展提出新视角,通过整合ReAct模式下智能系统的推理和行动能力,探索图书馆提升知识服务效能和个性化服务的新模式。
An LLM-based Knowledge Service System for Libraries Integrating the ReAct Model
Focusing on library knowledge service in the era of Large Language Models(LLMs),this article explores the way of developing an LLM-based knowledge service system that incorporates the ReAct model in libraries using the genealogy knowledge as the subject of experiment.By converting RDF data into natural language text,it creates a data set and uses the ReAct model to enable the LLM system to perform tasks such as data query,multilingual query,resource retrieval,resource recommendation and interpretation,which demonstrates the capability of the LLM integrated with the ReAct model in natural language processing and context understanding.However,this study also reveals the problems related to the understanding of multilingual questions,the consistency of fuzzy query results,and the provision of additional background knowledge.This article presents a new perspective on the innovative development of library knowledge services based on LLMs,and explores a new pattern for libraries to improve the effectiveness of knowledge services and personalized services by integrating the reasoning and action capabilities of LLM system under the ReAct model.

library knowledge servicelarge language modelAI 2.0 eraReAct model

郭利敏、付雅明

展开 >

上海图书馆(上海科学技术情报研究所)

上海大学文化遗产与信息管理学院

图书馆知识服务 大语言模型 AI 2.0时代 ReAct模式

国家社会科学基金重大项目重庆市科技局技术创新与应用发展专项面上项目

21&ZD334cstc2020jscxmsxmX0083

2024

图书馆论坛
广东省立中山图书馆

图书馆论坛

CSTPCDCSSCICHSSCD北大核心
影响因子:1.864
ISSN:1002-1167
年,卷(期):2024.44(6)
  • 22