首页|基于混合方法的失效专利质量评价方法

基于混合方法的失效专利质量评价方法

扫码查看
失效专利对中小企业开展技术研发具有重要参考价值,识别高质量失效专利并加以利用,对弥补企业研发资源短板、规避侵权风险至关重要.文章首先从技术价值、经济价值、专利权人创新活动规模三个维度,选取13个失效专利质量评价指标;随后结合熵权TOPSIS模型计算失效专利质量综合得分,采用四分位距法设定阈值进行分级评价,从指标计算角度进行失效专利质量评价;接着应用基于深度学习的预训练模型Sentence-BERT对专利摘要进行向量化表征,依托基于密度的离群点检测算法识别离群专利,实现从内容分析角度评价失效专利质量;最后以"人工智能"领域的授权失效专利为例,对所提方法进行实证,从指标维度、方法维度和政策维度对结果进行检验,验证了所提方法的科学性和有效性,能够为中小企业快速遴选高质量失效专利、弥补自身技术短板提供创新方案.
A Quality Evaluation Method for Invalid Patents Based on Mixed Methods
Invalid patents serve as a valuable reference for small and medium-sized enterprises(SMEs)in technological research and development.Identifying and utilizing high quality invalid patents is crucial for bridging the gap in R&D resources and avoiding infringement risks.This article selects 13 indicators to evaluate the quality of invalid patents from three dimensions:technical value,economic value,and the scope of patentees'innovation activities.It calculates the comprehensive scores of invalid patents by applying the entropy-weighted TOPSIS model,and adopts the interquartile range method to set the threshold for hierarchical evaluation,so as to evaluate the quality of invalid patents from the perspective of index calculation.It employs the pre-trained Sentence-BERT model based on deep learning to vectorize the patent abstracts,and identifies the outlier patents using the density-based outlier detection algorithm,so as to evaluate the quality of invalid patents from the perspective of content analysis.The proposed method is empirically verified by taking authorized invalid patents in the field of"Artificial Intelligence"as an example,and the results are validated in terms of indicators,methods,and policies,thus providing innovative solutions for SMEs to quickly select high-quality invalid patents and bridge their technology gaps.

invalid patentsindex calculationcontent analysisquality evaluation

宋凯、冉从敬

展开 >

山东师范大学图书馆

武汉大学图书馆学系

武汉大学信息资源研究中心

失效专利 指标计算 内容分析 质量评价

国家社会科学基金青年项目山东省自然科学基金青年项目

23CTQ028ZR2023QG105

2024

图书馆论坛
广东省立中山图书馆

图书馆论坛

CSTPCDCSSCICHSSCD北大核心
影响因子:1.864
ISSN:1002-1167
年,卷(期):2024.44(9)