首页|AIGC赋能中医古籍活化:Huang-Di大模型的构建

AIGC赋能中医古籍活化:Huang-Di大模型的构建

扫码查看
目前中医界已构建大量的古籍资源库,然而数字化研究仍以文献扫描整理、浏览检索等浅层知识服务的实现为主,生成式AI的发展为中医古籍数字化研究提供了新的机遇。文章在Ziya-LLaMA-13B-V1开源模型基础上,通过继续预训练、有监督微调、DPO优化的全流程训练步骤,构建中医古籍生成式对话大语言模型,最后通过自动评估和人工评估验证了其在中医古籍领域的优异性能。自动评估结果表明:训练损失函数成功收敛,各对话类目下BLEU、ROUGE指标值均偏低,侧面反映出该模型具备强大的领域创造力。人工评估结果显示:该模型在古籍知识问答方面性能显著优于现有的中医药垂直领域两类模型,较优于通义千问,部分类目如预防养生的回答能力与ChatGPT(gpt-4)相比略有不足。本研究突破中医古籍数字化固有的研究模式,实现了古籍资源的深度融合与利用,可满足古籍知识解答、中医问诊、养生保健等多元化的知识服务。
AIGC Empowering the Revitalization of Ancient Books on Traditional Chinese Medicine:Building the Huang-Di Large Language Model
There are a large number of databases related to ancient books on Traditional Chinese Medicine(TCM),but digital research in this area is still dominated by shallow knowledge services that involve document scanning and collation,browsing and retrieval.The development of generative AI provides new opportunities for the digital research on ancient TCM books.Based on the Ziya-LaMA-13B-V1 open-source model,this article designs a generative dialogue large language model for ancient TCM works through the whole process of continuous pre-training,supervised fine-tuning,and DPO optimization,and verifies its excellent performance through automatic and manual evaluation.The automatic evaluation results show that the loss function for training converges successfully,and the values of BLEU and ROUGE indicators are relatively low under each dialogue category,which indirectly reflects the strong domain creativity of the model.The manual evaluation results show that the model significantly outperforms the existing two types of models in the TCM vertical in terms of knowledge Q&A,better than Tongyi Qianwen,and in some categories such as disease prevention,health care,its response ability is slightly weaker than ChatGPT(gpt-4).By breaking the habitual digital research pattern of ancient TCM books,this study achieves an in-depth integration and utilization of ancient book resources,and fulfills the diversified knowledge services such as ancient book knowledge Q&A,TCM consultation,and health care support.

ancient books on traditional chinese medicinedigitizationlarge language modelknowledge serviceAIGC

张君冬、杨松桦、刘江峰、黄奇

展开 >

南京大学信息管理学院

郑州大学人工智能学院

中医古籍 数字化 大语言模型 知识服务 AIGC

2024

图书馆论坛
广东省立中山图书馆

图书馆论坛

CSTPCDCSSCICHSSCD北大核心
影响因子:1.864
ISSN:1002-1167
年,卷(期):2024.44(10)