首页|基于语义分析的政府开放数据平台隐私政策量化评价研究

基于语义分析的政府开放数据平台隐私政策量化评价研究

扫码查看
[目的/意义]在政府开放数据持续推进的过程中,如何确保个人隐私的安全性成为重要课题.系统梳理政府开放数据平台隐私政策,为推动政府开放数据和隐私保护的平衡发展提供参考和借鉴.[方法/过程]以15个省级政府开放数据平台隐私政策(211条政策细则)为研究样本,综合运用LDA2Vce主题模型、命名实体识别以及PMC指数模型,从"政策主题—政策客体—政策效力"3个维度对各省政府开放数据平台隐私政策进行系统性梳理和量化评价.[结果/结论]我国政府数据开放平台隐私政策存在政策主题有待细化、政策客体参与失衡、政策效力仍需提升等问题,并提出相应的对策建议.
Quantitative Evaluation of the Privacy Policy Framework of Open Government Data Platforms
[Purpose/Significance]In the process of the continuous promotion of open government data,how to ensure the security of personal privacy has become an important issue.The privacy policies of the platforms are systematically sorted out to provide references for promoting the balanced development of open government data and privacy protection.[Method/Process]This paper took the privacy policies of 15 provincial open government data platforms(211 rules)as research samples,comprehensively adopted the LDA2Vec topic model,named enti-ty recognition and PMC index model to systematically sort out and quantitatively evaluate the privacy policies of provincial open government data platforms from three dimensions of"policy theme-policy object-policy effec-tiveness".[Result/Conclusion]Privacy policy in China's open government data platforms has some problems,such as unspecific policy theme,unbalanced participation of policy object,and weak policy effectiveness.At last,it puts forward some corresponding countermeasures and suggestions.

open government dataprivacy protectionLDA2Vec topic modelnamed entity recognitionPMC index model

陈美、曹语嫣

展开 >

中南财经政法大学公共管理学院 武汉 430073

开放政府数据 隐私保护 LDA2Vec主题模型 命名实体识别 PMC指数模型

国家社会科学重大项目

21&ZD337

2024

图书情报工作
中国科学院文献情报中心

图书情报工作

CSTPCDCSSCICHSSCD北大核心
影响因子:2.203
ISSN:0252-3116
年,卷(期):2024.68(1)
  • 29