首页|有限样本下的科技文献语步识别方法探讨

有限样本下的科技文献语步识别方法探讨

扫码查看
[目的/意义]科技文献语步识别是从非结构化的文献中抽取出研究目的、对象、方法、结果、结论等语义片段,针对摘要语步识别实际应用中常出现的高质量标注样本数量较有限、深度识别模型可解释性差等问题开展研究.[方法/过程]在语步识别中引入提示学习范式,设计对应提示模板和同义词表达器,采用局部线性代理方式生成模型解释,构建可解释的深度学习识别模型,并在生物领域和计算机领域两个数据集随机抽取部分数据中进行模拟实证研究.[结果/结论]基于大模型提示学习的范式在语步识别任务上以较少训练代价的取得比精调小模型更高的精度,在PubMed三个子数据集上训练后,预测精度分别提高2.5%,4.1%和3.9%.结合准确率和解释结果来看,"方法""结果"语步识别效果较好(F1值约90%),"背景""对象"语步相对差些(F1值不到70%).基于提示学习的方式能够以更快捷高效的方式使用预训练语言模型,获得准确性高、可解释性好的识别模型.
Discussion of Moves Recognition of Scientific Documents Under Limited Samples
[Purpose/Significance]Moves recognition refers to extracting semantic segments such as research purposes,objects,methods,results,and conclusions from unstructured abstracts.This paper focuses on the problems of the limited high-quality annotation samples and the poor interpretability of the deep recognition model that often occur in the practical application of move recognition.[Method/Process]In this paper,it introduced the prompt-based learn-ing paradigm in move recognition,and designed the corresponding template and verbalizer.By the local linear proxy approach,it produced the model interpretation and constructed an interpretable deep learning recognition model.Then it carried out a simulation empirical study on randomly selected partial data from two datasets in the biological and computer fields.[Result/Conclusion]Prompt tuning on large model can achieve higher accuracy than the fine-tuned small model on moves recognition task with less training cost.After training on three sub datasets of PubMed,the F1 score was improved by 2.5%,4.1%and 3.9%,respectively.Combining the accuracy rate and interpretation results,the"method"and"result"moves recognition effect is better(F1 score about 90%),and the"background"and"method"moves are relatively poor(F1 score<70%).The prompt learning approaches are faster and more efficient to use large pre-trained language model,and obtain recognition results with high accuracy and interpretability.

limited samplesdata augmentationprompt turninginterpretability

张鑫、许海云、杨宁、方肖、赵爽

展开 >

中国科学院成都文献情报中心 成都 610213

中国科学院大学信息资源管理系 北京 100190

山东理工大学管理学院 淄博 255000

小样本 文本增强 提示学习 模型解释

四川省社会科学规划项目中国科学院文献情报能力建设专项Chinese Academy of Sciences Document and Information Capacity Building Project titled

SC22C002SC22C002E2C0003009

2024

图书情报工作
中国科学院文献情报中心

图书情报工作

CSTPCDCSSCICHSSCD北大核心
影响因子:2.203
ISSN:0252-3116
年,卷(期):2024.68(3)
  • 47