首页|基于离群点视角的颠覆性专利预测研究

基于离群点视角的颠覆性专利预测研究

扫码查看
[目的/意义]在日趋激烈的国际竞争背景下,颠覆性技术被认为是引领技术和产业发展方向、助推企业和产业实现"弯道超车"的绝佳机会窗口.为此,预测和部署颠覆性技术对于国家抢占科技制高点、重塑价值链均具有重大战略意义.[方法/过程]结合深度学习和离群点检测算法,构建基于离群点视角的颠覆性专利预测框架.该研究框架包括五个关键步骤:首先,利用BERT模型和TF-IDF算法将专利文本和专利分类号转化为可计算的高维向量表示,并结合PCA算法进行降维和特征融合;其次,采用三种离群点检测算法,以增量迭代的方式识别离群专利;再者,通过数据集修正,从离群专利中保留新技术专利;在此基础上,通过深度剖析新技术形式颠覆性专利的核心特征,构建有效的测度指标体系;最后,利用深度学习DNN模型拟合专利指标和颠覆性专利标签之间的关联关系,从而实现从大量的新技术专利中对潜在颠覆性专利的有效预测.[结果/结论]以人工智能为例,验证了该方法的有效性.结果共预测出411条颠覆性专利,这些专利主要涉及六大颠覆性方向:多模态预训练大模型、增强现实、生成式AI、自动驾驶、图像识别与处理和智能通信.这些技术的推广和应用,将对未来的科技和产业发展产生重大影响.研究结果可为国家政策制定和企业技术布局提供重要的决策参考.
Research on Disruptive Patent Prediction Based on Outlier Perspective
[Purpose/Significance]In the fierce international competition,disruptive technology is an import-ant opportunity to lead the development of technology and industry,and help enterprises and industries achieve"overtaking on curves".Therefore,to predict and deploy it is of great strategic significance for the country to seize the height of technology and reshape the value chain.[Method/Process]This paper used deep learning and outlier detection algorithms to construct a disruptive patent prediction framework.This research framework included five key steps.Firstly,it adopted the BERT model and TF-IDF algorithm to convert patent text and classification number into computable high-dimensional vector,and took the dimensionality reduction and feature fusion with the PCA algorithm.Secondly,it used three outlier detection algorithms to identify outlier patents through incremental itera-tion.Furthermore,by modifying the dataset,it retained new technology patents from outlier patents.On this basis,by deeply analyzing its core characteristics of disruptive patents in the form of new technologies,it constructed an effective measurement index system.Finally,it took the deep learning DNN model to fit the correlation between patent indicators and disruptive patent labels to effectively predict potential disruptive patents from a lot of new technology patents.[Result/Conclusion]Taking artificial intelligence as an example,it verifies the effectiveness of this method.It predicts 411 disruptive patents in six disruptive directions:multimodal pre-trained large models,augmented reality,generative AI,autonomous driving,image recognition and processing,and intelligent communi-cation,which will have a significant impact on future technological and industrial development.The research results provide important decision-making references for national policy formulation and enterprise technology layout.

disruptive technologyoutlier detectionpredictive designdeep learningpatent analysis

王丹、周潇、赵捧未、樊嘉逸

展开 >

西安电子科技大学经济与管理学院 西安 710126

颠覆性技术 离群点检测 预测研究 深度学习 专利分析

国家自然科学基金面上项目

72374165

2024

图书情报工作
中国科学院文献情报中心

图书情报工作

CSTPCDCSSCICHSSCD北大核心
影响因子:2.203
ISSN:0252-3116
年,卷(期):2024.68(5)
  • 43