首页|面向中文电子病历的多模态知识图谱构建方法研究

面向中文电子病历的多模态知识图谱构建方法研究

扫码查看
[目的/意义]为了对结构复杂、专业性强的多模态电子病历数据进行深度序化和组织,基于多模态深度学习和自然语言处理方法构建面向中文电子病历的多模态知识图谱,进而为临床决策支持和领域知识服务提供更全面地支撑.[方法/过程]首先对多模态数据进行预处理以构建多模态电子病历数据集;接着利用ResNet和BERT预训练模型分别提取医学图像和文本特征;然后基于多层级视觉提示机制的多模态融合方法构建多模态实体关系联合抽取模型;最后使用图数据库存储并可视化呈现电子病历中不同模态知识.[结果/结论]构建面向中文电子病历的多模态知识图谱,进一步丰富该领域文本和图像模态知识关联,推进多模态知识组织的实践范畴,为医疗健康领域知识序化、精准知识服务和深度知识发现奠定基础.
Research on Multimodal Knowledge Graph Construction Method for Chinese Electronic Medical Record
[Purpose/Significance]To effectively sequence and organize the multimodal electronic medical re-cord data with complex structure and strong specialization,in this paper,a multimodal knowledge graph is constructed for Chinese electronic medical record based on multimodal deep learning and natural language processing methods.It provides a more comprehensive support for the clinical decision support and domain knowledge service.[Method/Process]Firstly,the multimodal data were preprocessed to construct a multimodal electronic medical record dataset.Then the medical image and text features were extracted respectively using ResNet and BERT pre-training models.The entity-relationship joint extraction model was built through a multimodal fusion method based on a multilevel vi-sual prompt mechanism.Finally,a graph database was used to store and visually presented the knowledge contained in the different modalities of the healthcare field.[Result/Conclusion]This research constructs a multimodal knowledge graph for Chinese electronic medical records.The graph further enriches the domain knowledge association of text and image modalities,advances the practical scope of multimodal knowledge organization.It provides a foundation for knowledge sequencing,precise knowledge service,and deep knowledge discovery in the healthcare domain.

multimodal knowledge graphmultimodal information extractionelectronic medical recordknowledge organization

韩普、陈文祺、叶东宇

展开 >

南京邮电大学管理学院 南京 210003

江苏省数据工程与知识服务重点实验室 南京 210023

多模态知识图谱 多模态信息抽取 电子病历 知识组织

2024

图书情报工作
中国科学院文献情报中心

图书情报工作

CSTPCDCSSCICHSSCD北大核心
影响因子:2.203
ISSN:0252-3116
年,卷(期):2024.68(23)