首页|多模态数据驱动的Al智能体模式设计

多模态数据驱动的Al智能体模式设计

扫码查看
[目的/意义]针对不同任务的性质设计用于多模态数据处理的AI智能体模式,有利于深入挖掘多模态数据价值,从而支持决策过程.[方法/过程]设计一种结合水平智能体结构与垂直智能体结构的混合模式,以智能投资场景中财务年度报告为例,选择美股市场道琼斯指数的30支股票,对各个公司2023年度年报进行智能投资研究分析.利用大型语言模型处理多模态数据的能力,分析公司基本面、市场情绪与风险和机会3个子任务,并根据子任务做出最终的投资决策.[结果/结论]垂直结构在要求工作效率和清晰决策的分析中表现出色.水平结构在需要协作、灵活性和广泛汇集知识与专业技能的场景中表现更佳.针对不同的任务选择最佳的混合智能体结构后,在最终的投资决策准确性上比单一模式的智能体结构表现更好.
Design of AI Agent Models Driven by Multimodal Data
[Purpose/Significance]This study develops an AI agent model for multimodal data processing across varied tasks.By exploring the inherent value of multimodal data,the model enhances the support for de-cision-making processes.[Method/Process]This study designed a hybrid AI agent model that integrated both horizontal and vertical structures.Using the financial annual reports from thirty Dow Jones Industrial Average companies as a case study,this model facilitated intelligent investment research and analysis for the year 2023.The research compared the performance of different organizational structures of financial agents in executing three sub-tasks:analysis of company fundamentals,market sentiment,and risk and opportunity assessment.Decisions were made based on these analyses,leveraging large language models capable of processing multimodal data.[Result/Conclusion]The vertical agent structure excels in tasks requiring efficient,directional strategic analysis with clear hierarchical decision-making.Conversely,the horizontal structure is more effective in scenarios demanding collabo-ration,flexibility,and broad expertise.The hybrid model outperforms single-structure agents in terms of accuracy in the final investment decision,demonstrating its efficacy in optimizing task-specific agent configurations.

multi-modal dataAI agentshorizontal agent structurevertical agent structurefinancial de-cision

韩雪雯、车尚锟、杨梦晴、王能

展开 >

清华大学经济管理学院 北京 100084

南京师范大学新闻与传播学院 南京 210023

加州大学洛杉矶分校 洛杉矶90095

多模态数据 AI智能体 水平智能体结构 垂直智能体结构 金融决策

2024

图书情报工作
中国科学院文献情报中心

图书情报工作

CSTPCDCSSCICHSSCD北大核心
影响因子:2.203
ISSN:0252-3116
年,卷(期):2024.68(24)