首页|基于T/P卫星高度计资料的台湾岛周边海域风浪的分布和时间变化特征

基于T/P卫星高度计资料的台湾岛周边海域风浪的分布和时间变化特征

扫码查看
利用有效波高和风速的3种概率密度函数分布:Rayleigh概率密度函数分布、Weibull概率密度函数分布、Log-Normal密度函数分布,结合TOPEX卫星高度计资料,对台湾岛周边海域的有效波高和风速进行分析比较.结果表明:有效波高的观测资料直方图与Log-Normal概率密度函数分布符合较好;而风速的观测资料直方图与Weibull概率密度函数分布符合较好.台湾岛周边海域的大部分海域以年变化为主,有效波高的平均值在冬季达到最大值,每年12月的平均值最大.每年平均有效波高最大值大多数出现在夏季,春季则是一年中有效波高平均值最小的季节,秋季和冬季则是巨浪出现频率较高的季节.同时,对有效波高平均值的时间序列做傅立叶展开表明,对应周期为1 a变化时的波动能量占每条轨道的波高波动能量的主要分量.
Characteristic and temporal variations of the wind wave fields over the adjacent waters of Taiwan Island based on T/P satellite altimeter data
The three probability density function distribution ( Rayleigh probability density function, Weibull probability density function, Log-Normal probability density function) of the SWH and wind speed, were combined with data from TOPEX satellite altimeter to conduct the comparison analysis of SWH and wind speed over the adjacent waters of Taiwan Island. The results showed that the Log-Normal probability density of the SWH is in good agreement with the histogram of the observed data in the whole scope, and the histogram of the measured wind speed is in good agreement with the Weibull probability density distribution. Most of the waters surrounding the Taiwan Island undergoes predominant annual changes. It was shown that the average of SWH was the largest in winter and reached the maximum in December. The maximum of mean SWH mainly occurred in summer and minimum in spring. The large waves normally appeared in winter and autumn. Meanwhile, Fourier expansion of the time series of SWH showed that wave energy corresponding with 1 -year cycle was the main component of wave height and wave energy on every pass.

physical oceanographysignificant wave heightwind speedprobability distributionspectral peak period

谢辛、李燕初、阮海林、郑凌虹、陈海颖

展开 >

国家海洋局第三海洋研究所,福建厦门361005

物理海洋学 有效波高 风速 概率密度 谱峰周期

国家海洋局第三海洋研究所基本科研业务费资助项目海洋赤潮灾害立体监测技术与应用国家海洋局重点实验室开放研究基金资助项目

海三科2009048MATHAB200903

2013

应用海洋学学报
国家海洋局第三海洋研究所 中国海洋学会 福建省海洋学会

应用海洋学学报

CSTPCDCSCD
影响因子:0.526
ISSN:2095-4972
年,卷(期):2013.32(1)
  • 3
  • 5