首页|基于强化学习的智能合约模糊测试

基于强化学习的智能合约模糊测试

扫码查看
随着区块链技术的迅猛发展,智能合约在数字资产交易等领域的应用日益广泛.然而,其安全漏洞问题也日益凸显,对区块链系统的安全性构成了严重威胁.鉴于此,提出了一种基于强化学习的智能合约模糊测试方法RL_soFuzzer,以提高智能合约的安全检测效率.传统的模糊测试方法需生成大量的交易序列来触发潜在漏洞,会导致状态空间爆炸和代码覆盖率低下.RL_soFuzzer利用强化学习技术对内存快照进行调度,并结合数据流相关性排序,进行深度检测.同时引入了基于拓扑排序的函数状态变量排序机制,减少测试过程中的不确定性.实验结果表明,RL_soFuzzer在代码覆盖率和漏洞检测能力上显著优于传统方法,在实际应用中性能卓越.
Smart Contract Fuzzing Based on Reinforcement Learning
With the rapid development of blockchain technology,smart contracts are increasingly widely used in digital asset transactions and other fields.However,the problem of its security vulnerability is also becoming more and more prominent,posing a serious threat to the security of the blockchain system.In view of this,a smart contract fuzzing method based on reinforcement learning,RL_soFuzzer,is proposed to improve the security detection efficiency for smart contracts.Conventional fuzzing methods require a large number of transaction sequences to trigger potential vulnerabilities,resulting in state space explosion and poor code coverage.RL_soFuzzer uses reinforcement learning technology to schedule memory snapshots,and combines data stream correlation sorting for in-depth detection.At the same time,the function state variable sorting mechanism based on topological sorting is introduced to reduce the uncertainty in the testing process.Experimental results indicate that the RL_soFuzzer is significantly better than conventional methods in terms of code coverage and vulnerability detection ability,and shows excellent performance in practical applications.

blockchainsmart contractfuzzingreinforcement learningtopological sorting

谈聪、李钊、廖思捷、秦素娟

展开 >

北京邮电大学网络安全学院,北京 100876

中国电子科技集团公司第三十研究所,四川 成都 610041

区块链 智能合约 模糊测试 强化学习 拓扑排序

2025

通信技术
中国电子科技集团公司第三十研究所

通信技术

影响因子:0.518
ISSN:1002-0802
年,卷(期):2025.58(1)