首页|在线学习辅助的智能接收机设计与实现

在线学习辅助的智能接收机设计与实现

扫码查看
为了解决复杂场景下的可靠通信问题,设计了一种在线学习辅助的正交频分复用(OFDM)智能接收机.该接收机能够判断信道环境是否发生改变,并在线收集样本数据进行训练,形成当前环境下最佳的接收参数.在OFDM系统的信道估计模块中,设计了基于样本含噪均方误差(MSE)的性能比较器作为信道环境变化的判断依据,并采用轻量化的神经网络结构以实现快速在线训练.最后,通过通用软件无线电外设(USRP)进行了实现和验证.仿真和空口实验表明,所提接收机能够有效感知并适应新的信道环境,并且在导频数量受限的情况下,接收性能和收敛速度均优于现有的机器学习方法.
Design and implementation of online learning assisted intelligent receiver
To address the issue of reliable communication under complicated scenarios,an online learning-assisted intel-ligent OFDM receiver was proposed.The variations of the channel environment could be precepted by the receiver,and the optimal parameters of the receiver under the current scenario were obtained by collecting data and training online.In the channel estimation module of the OFDM system,a performance comparator based on the mean square error of noisy channel samples was designed as the indicator of channel environment variations.To accelerate the online training pro-gress,a lightweight neural network structure was applied.The proposed method was further implemented and verified based on universal software radio peripherals.The numerical simulation and over-the-air experimental results demon-strate that the proposed receiver can perceive and adapt to new environments effectively,and outperforms existing ma-chine learning methods in terms of receiving performance and convergence rate with a limited number of pilots.

machine learningintelligent receiveronline trainingOFDM

孔凌劲、梅锴、刘潇然、熊俊、赵海涛、魏急波

展开 >

国防科技大学电子科学学院,湖南 长沙 410073

机器学习 智能接收机 在线训练 正交频分复用

国家自然科学基金资助项目国家自然科学基金资助项目

6193102062101569

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(1)
  • 4