首页|有人机/无人机智能协同目标搜索和轨迹规划算法

有人机/无人机智能协同目标搜索和轨迹规划算法

扫码查看
基于有人机/无人机智能协同平台,针对多个位置未知的干扰信号源搜索及轨迹规划进行了研究.考虑到搜索过程的实时性和动态性,提出了一种基于多智能体深度强化学习的有人机/无人机智能协同目标搜索和轨迹规划(MUICTSTP)算法.各无人机通过感知接收干扰信号强度在线决策轨迹规划,同时将感知信息和决策动作传给有人机来获得全局评估.仿真结果表明,该算法相比其他算法在长期接收干扰信号强度、碰撞等方面表现出更好性能,且获得更优的学习策略.
Algorithm for intelligent collaborative target search and trajectory planning of MAV/UAV
Based on the manned aerial vehicle(MAV)/unmanned aerial vehicle(UAV)intelligent cooperation platform,the search of multiple interfered signal sources with unknown locations and trajectory planning were studied.Considering the real-time and dynamic nature of the search process,a MAV/UAV intelligent collaborative target search and trajectory planning(MUICTSTP)algorithm based on multi-agent deep reinforcement learning(MADRL)was proposed.Each UAV made online decision on trajectory planning by sensing the received interference signal strength(RISS)values,and then transmitted the sensing information and decision-making actions to the MAV to obtain the global evaluation.The simula-tion results show that the proposed algorithm exhibits better performance in long-term RISS,collision,and other aspects compared to other algorithms,and the learning strategy is better.

MAV/UAVintelligent collaborativeMADRLtrajectory planningRISS

卢卓、吴启晖、周福辉

展开 >

南京航空航天大学电子信息工程学院,江苏 南京 210016

有人机/无人机 智能协同 多智能体深度强化学习 轨迹规划 接收干扰信号强度

江苏省基础研究计划自然科学基金资助项目江苏省科研与实践创新计划基金资助项目

BK20222013KYCX22_0358

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(1)
  • 6