首页|流式大数据平台下的弹性数据迁移能效优化策略

流式大数据平台下的弹性数据迁移能效优化策略

扫码查看
针对流式计算框架在最初设计时缺乏能效方面的考虑,导致其存在高能耗与低效率的问题,提出一种流式大数据平台下的弹性数据迁移节能优化策略.首先,建立负载预测模型与资源判定模型,并进一步设计负载预测算法,通过预测负载变化趋势确定节点资源占用,找到资源过载与过剩节点;其次,建立资源约束模型与最优数据迁移模型,由此提出最优数据迁移算法,以提高节点资源利用率为目的进行数据迁移;最后,建立能耗模型,计算集群进行数据迁移后节约的能耗.实验结果表明,数据迁移节能优化策略能够对集群内节点资源变化做出及时响应,并在提高节点资源利用率的基础上,有效提高集群数据处理的能效.
Energy-efficient optimization strategy based on elastic data migration in big data streaming platform
Focused on the problem that the stream computing platform was suffering from the high energy consumption and low efficiency due to the lack of consideration for energy efficiency in designing process,an energy-efficient optimi-zation strategy based on elastic data migration in big data streaming platform(EEDM-BDSP)was proposed.Firstly,models of the load prediction and the resource judgment were set up,and the load prediction algorithm was designed,which predicted the load tendency and determine node resource occupancy,so as to find nodes of resource overload and redundancy.Secondly,models of the resource constraint and the optimal data migration were set up,and the optimal data migration algorithm was proposed,which data migration for the purpose of improving node resource utilization.Finally,model of the energy consumption was set up to calculate the energy consumption saved by the cluster after data migration.The experimental results show that the EEDM-BDSP changes node resources in the cluster can responded on time,the resource utilization and the energy-efficient are improved.

stream computingload predictionresource constraintdata migrationenergy-efficient

蒲勇霖、许小龙、于炯、李梓杨、国冰磊

展开 >

南京信息工程大学软件学院,江苏 南京 210044

新疆大学软件学院,新疆 乌鲁木齐 830002

湖北文理学院计算机工程学院,湖北 襄阳 441053

流式计算 负载预测 资源约束 数据迁移 能效

国家自然科学基金资助项目新疆维吾尔自治区重点研发计划基金资助项目江苏省高等学校自然科学基金资助项目新疆维吾尔自治区自然科学基金资助项目湖北省自然科学基金资助项目

62262064202229535823KJB5200192022D01C562022CFB805

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(2)
  • 24