首页|移动边缘网络中基于QoE的网络媒体流卸载算法

移动边缘网络中基于QoE的网络媒体流卸载算法

扫码查看
针对移动边缘计算中新兴网络媒体流业务面临的高时延、高能耗、高带宽、低用户体验质量(QoE)等问题,提出一种基于QoE反馈配置卸载(QFCO)算法.首先,联合考虑预处理和优先级划分,从而最大化网络资源利用率,并为计算任务赋予不同的权重建立资源分配关系;然后,综合考虑截止时间、计算资源、功率和带宽等约束,以任务时延、能耗和精确度加权和为优化目标建立QoE模型,利用拉格朗日乘数法求解.仿真结果表明,相比深度增强学习在线卸载(DROO)算法,所提算法可有效实现资源的整体优化配置,更好地提升用户体验质量.
Network media streaming offloading algorithm based on QoE in mobile edge network
Aiming at the problems of high-latency,high energy consumption,high bandwidth,and poor quality of expe-rience(QoE)caused by emerging network media streaming business in mobile edge computing,a computing offloading algorithm based on QoE feedback configuration was proposed.Firstly,both preprocessing and priority were comprehen-sively considered to maximize network resource utilization.Meanwhile,different weights were assigned to the computa-tion tasks for establishing a resource allocation relationship.Secondly,after comprehensively taking into account deadline,computing resource,power and bandwidth constraint,an QoE model was established where the optimization objective was the weighted sum of task delay,energy consumption and precision,and the method of Lagrange multipliers was uti-lized to solve the established model.Simulation results indicate that,compared with the deep reinforcement learn-ing-based online offloading algorithm,the proposed algorithm can effectively optimize the resource allocation and better improve the QoE.

mobile edge computingquality of experienceLagrange multiplier methodnetwork media streamingcom-puting offloading

王再见、程浩

展开 >

安徽师范大学物理与电子信息学院,安徽 芜湖 241002

安徽省智能机器人信息融合与控制工程研究中心,安徽 芜湖 241002

移动边缘计算 用户体验质量 拉格朗日乘数法 网络媒体流 计算卸载

安徽省自然科学基金资助项目

2008085MF222

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(2)
  • 29