首页|基于自动化特征组合的隐私保护风险识别机制

基于自动化特征组合的隐私保护风险识别机制

扫码查看
异常行为识别(AD)算法在实际应用中,通常会面临特征组合优化困难、分类器准确率难提高、模型应用效率低等技术挑战.用户所产生的多维数据具有丰富的空间结构信息,围绕这些多维数据的特点,在通过同态加密的隐私保护方式进行数据脱敏的基础上,针对特征组合优化困难的技术挑战,提出并实现了首个基于特征分箱的自动化特征组合优化模型算法,该算法在特征组合优化方面提升了99.93%的计算效率.基于自动化特征组合优化模型筛选出的重要特征所组合的规则仍存在分类器准确率难提高的技术挑战,故将自动化筛选出的重要特征融入识别模型中,设计并实现了首个规则和算法的交叉应用模型,并将该方式应用到基于用户多维信息的异常行为识别中,在识别先享不付类异常用户的具体场景中实现资金挽损效率提升27.78%.
Privacy protection risk identification mechanism based on automated feature combination
In practice,the anomaly detection(AD)algorithm usually faced technical challenges such as difficulty in opti-mizing feature combinations,difficulty in improving classifier accuracy,and low model application efficiency.The multi-dimensional data generated by users was with rich spatial structure information,revolved around the characteristics of the multidimensional data.Building upon the privacy protection method using homomorphic encryption,the technical challenge of optimizing feature combinations was addressed.The first automated feature combination optimization model algorithm based on feature binning was proposed and implemented.This algorithm enhanced computational effi-ciency in feature combination optimization by 99.93%.The rules combined by the important features selected by the au-tomatic feature combination optimization model still faced the technical challenge of difficulty in improving the classi-fier accuracy.Therefore,the important features selected automatically were integrated into the recognition model,the first cross-application model of rules and algorithms was designed and implemented.This approach was applied to anomaly detection based on multi-dimensional user data,resulting in a 27.78%increase in funds saved in the specific scenario of identifying abnormal users who enjoy first but do not pay.

anomaly detectionmulti-dimensional informationrisk identificationtrustworthiness modelhomomorphic encryption

蔡民超、姚宏伟、王旸、秦湛、陈少梦、任奎

展开 >

浙江大学网络空间安全学院,浙江 杭州 310007

杭州快迪科技有限公司,浙江 杭州 310000

异常行为识别 多维信息 风险识别 可信度模型 同态加密

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(11)