首页|基于多尺度注意力特征增强的异常流量检测方法

基于多尺度注意力特征增强的异常流量检测方法

扫码查看
针对现有网络异常流量检测方法存在特征冗余以及流量序列的时间依赖性,导致模型训练速度慢和检测性能不佳等不足,提出一种基于多尺度注意力特征增强的异常流量检测方法.首先,通过基于动态分组的特征选择算法从流量数据中选出最优特征集合.其次,使用密集卷积神经网络和多尺度注意力特征提取网络分别提取流量数据的局部和全局特征.最后,利用特征增强网络增强局部和全局特征的区分度和整体表达的有效性,并采用加权融合的方法进行特征融合,实现异常流量检测.实验结果表明,所提方法在CIC-IDS2017和CSE-CIC-IDS2018数据集上的F1分数分别提升0.17%~2.75%、0.43%~8.99%,具有良好的检测效果.
Abnormal traffic detection method based on multi-scale attention feature enhancement
To address feature redundancy and temporal dependencies in traffic data sequences that slow down model training and degrade performance of existing network abnormal traffic detection methods,an abnormal traffic detection method based on multi-scale attention feature enhancement was proposed.Firstly,an optimal feature set was selected from traffic data using a feature selection algorithm based on dynamic grouping.Secondly,Dense-CNN and a multi-scale attention feature extraction network were employed to extract local and global features of the traffic data.Finally,a fea-ture enhancement network was used to increase the distinctiveness and expressiveness of local and global features,which were then fused using a weighted fusion approach to achieve abnormal traffic detection.Experimental results on the CIC-IDS2017 and CSE-CIC-IDS2018 datasets show that the proposed method improves F1 score by 0.17%to 2.75%and 0.43%to 8.99%,respectively,which has good detection performance.

abnormal traffic detectionfeature selectionmulti-scale attentionfeature enhancement network

杨宏宇、张豪豪、成翔

展开 >

中国民航大学安全科学与工程学院,天津 300300

中国民航大学计算机科学与技术学院,天津 300300

扬州大学信息工程学院,江苏 扬州 225127

异常流量检测 特征选择 多尺度注意力 特征增强网络

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(11)