首页|基于时空Transformer特征融合的车辆轨迹预测

基于时空Transformer特征融合的车辆轨迹预测

扫码查看
在复杂的交通环境下,自动驾驶汽车需要充分地分析周围交通物体的运动方向、运动速度等信息,并准确预测未来的轨迹.针对这个问题,提出了一种基于时空Transformer的网络模型.该模型首先利用空间自注意力机制,通过捕捉同一时刻下车辆间的空间相互作用,实现对多车空间关系交互性的精确建模;随后通过时间自注意力机制提取连续帧的时间依赖关系,以此生成一组能够反映车辆动态行为的时空特征;最后这些特征被送入解码器,以预测所有车辆在未来5 s内的运动轨迹.在公开的NGSIM数据集上进行了训练和验证,与其他的先进方案相比,该模型在未来5 s的轨迹预测中具有更高的准确性和精度,长期预测准确率比先进方案提高14.6%.
Vehicle trajectory prediction based on spatio-temporal Transformer feature fusion
In complex traffic environments,autonomous vehicles must thoroughly analyze the motion direction,speed,and other information of surrounding traffic objects to accurately predict future trajectories.A network model based on spatio-temporal Transformer was proposed to address this issue.The framework initially employs a spatial self-attention mechanism to capture the spatial interactions between vehicles at the same moment,achieving precise modeling of the spatial relationship interactivity among multiple vehicles.Subsequently,a temporal self-attention mechanism was uti-lized to extract the temporal dependencies between consecutive frames,thereby generating a set of spatiotemporal fea-tures that reflect the dynamic behavior of vehicles.These features were then fed into a decoder to predict the motion tra-jectories of vehicles over the next 5 s.The proposed model was trained and validated on the publicly available NGSIM dataset.Compared to other state-of-the-art schemes,our scheme demonstrates greater accuracy and precision in trajec-tory prediction over the subsequent 5 s.The long-term forecasting accuracy is increased by 14.6%compared to the ad-vanced schemes.

autonomous drivingtrajectory predictionmulti-vehicle interactionTransformer

赵文红、王巍、万子璐

展开 >

嘉兴南湖学院公共基础教学部,浙江 嘉兴 314001

电磁空间安全全国重点实验室,浙江 嘉兴 314033

浙江工业大学信息工程学院,浙江 杭州 310013

自动驾驶 轨迹预测 多车交互 Transformer

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(11)