首页|移动车载边缘网络中基于递归深度强化学习的协作缓存接力算法

移动车载边缘网络中基于递归深度强化学习的协作缓存接力算法

扫码查看
考虑无路侧单元覆盖的场景,充分利用车辆之间的协作来构建缓存系统,提出一种基于递归深度强化学习的协作缓存接力算法.考虑缓存决策的动态特性,将问题建模为部分可观察的马尔可夫决策过程,利用图神经网络预测车辆轨迹,并通过计算车辆间的连接稳定性度量,选择可作为缓存节点的车辆.此外,将长短期记忆网络嵌入深度确定性策略梯度算法中,以实现最终的缓存决策.仿真结果表明,所提算法在缓存命中率和时延方面优于传统缓存算法.
Recursive deep reinforcement learning-based collaborative caching relay algorithm in mobile vehicular edge network
Considering scenarios without road side unit coverage,a recursive deep reinforcement learning-based collab-orative caching relay algorithm was proposed to construct a caching system by leveraging the cooperation among ve-hicles.Recognizing the dynamic nature of caching decisions,the problem was modeled as a partially observable Markov decision process.Vehicle trajectories were predicted using graph neural network,and the connectivity stability between vehicles was measured to select those that could serve as caching nodes.In addition,long short-term memory network was integrated into the deep deterministic policy gradient algorithm to achieve the final caching decision.Simulation re-sults demonstrate that the proposed algorithm outperforms traditional caching algorithms in terms of cache hit ratio and latency.

vehicular edge networkcollaborative caching relayrecursive deep reinforcement learningMarkov decision

吴红海、王白冰、马华红、邢玲

展开 >

河南科技大学信息工程学院,河南 洛阳 471023

车载边缘网络 协作缓存接力 递归深度强化学习 马尔可夫决策

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(11)