首页|联邦学习中的拜占庭攻防研究综述

联邦学习中的拜占庭攻防研究综述

扫码查看
联邦学习作为新兴的分布式机器学习解决了数据孤岛问题.然而,由于大规模、分布式特性以及本地客户端的强自主性,使得联邦学习极易遭受拜占庭攻击且攻击不易发现,这严重破坏了模型的完整性和可用性等.首先,以拜占庭攻击为研究对象,对攻击原理进行细化分类与剖析.其次,以经典的网络安全防御模型为指导,从防御机制的角度针对联邦学习防御方法进行分类和分析.最后,提出了联邦学习抗拜占庭攻击需要解决的关键问题和研究挑战,为未来相关研究者提供了新的参考.
Survey on Byzantine attacks and defenses in federated learning
Federated learning as an emerging distributed machine learning,can solve the problem of data islands.How-ever,due to the large-scale,distributed nature and strong autonomy of local clients,federated learning is extremely vul-nerable to Byzantine attacks and the attacks are not easy to detect,which seriously damages the integrity and availability of the model.First,taking Byzantine attacks as the research object,a detailed classification and analysis of the attack principles were conducted.Secondly,guided by the classic network security defense model,federated learning defense methods were classified and analyzed from the perspective of defense mechanisms.Finally,the key issues and research challenges that need to be solved in federated learning to resist Byzantine attacks were proposed,providing new refer-ences for future relevant researchers.

federated learningByzantine attackdefense methodattack and defense strategy

赵晓洁、时金桥、黄梅、柯镇涵、申立艳

展开 >

北京邮电大学网络空间安全学院,北京 100088

北京信息科技大学计算机学院,北京 100192

联邦学习 拜占庭攻击 防御方法 攻防策略

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(12)