首页|基于神经微分方程的区块链地址风险行为识别算法

基于神经微分方程的区块链地址风险行为识别算法

扫码查看
首先提出了Tgm_ODE模型,实现了波场链上的钱包地址利用USDT进行犯罪行为的识别;然后模型利用神经常微分方程模型(Neural ODE)学习到节点地址随不同的交易时间间隔而带来的特征连续变化的规律,同时引入了门控机制用于筛选出交易邻居节点地址所带给中心节点的影响强度,门控机制设计中加入了节点地址之间的交易关联性强度,最后利用自注意力机制融合不同交易时刻的节点地址特征,输出节点地址的特征表示.实验证明,Tgm_ODE模型能够有效捕捉节点地址随不规则的交易间隔时间动态变化的特征,在测试集中精准率、召回率和F1指标上优于传统的检测模型.
Blockchain address risk behavior identification algorithm based on neural differential equations
First,the Tgm-ODE model was proposed,which realized the identification of criminal behavior using USDT for wallet addresses on the wavefield chain.Then a neural ordinary differential equation model(Neural ODE)was used to learn the continuous changes in the characteristics of node addresses with different transaction time intervals.At the same time,a gate mechanism was introduced to filter out the impact of neighboring node addresses on the central node.The gate mechanism design incorporated the strength of transaction correlation between node addresses.Finally,the self attention mechanism was used to fuse the node address features at different transaction times,outputting the feature rep-resentation of node addresses.Experimental results show that the Tgm-ODE model can effectively capture the dynamic changes of node addresses with irregular transaction intervals,and outperforms traditional detection models in terms of precision,recall,and F1 metrics in the test set.

neural differential equationtime series modelgating mechanismself attention mechanism

梁飞、王瑞丽

展开 >

北京市公安局经济犯罪侦查总队,北京 100061

北京中科链源科技有限公司,北京 100123

神经微分方程 时序模型 门控机制 自注意力机制

2024

通信学报
中国通信学会

通信学报

CSTPCD北大核心
影响因子:1.265
ISSN:1000-436X
年,卷(期):2024.45(z1)