首页|基于注意力机制的糖尿病视网膜病变超广角图像分类检测

基于注意力机制的糖尿病视网膜病变超广角图像分类检测

扫码查看
针对糖尿病视网膜病变(DR)图像分类准确率不高的问题,提出了一种基于注意力机制的分类方法.该方法首先使用裁剪、均值滤波、高斯滤波、限制对比度自适应直方图均衡化(CLAHE)等方法进行预处理,模型以DenseNet架构作为基础模型,加入了通道注意力机制和空间注意力机制进一步提高模型对关键特征的识别能力.实验结果表明:与传统方法相比,改进后的模型分类效果优于传统模型,在Kaggle数据集其平均准确率达到了 89.15%,平均特异度为94.22%;在超广角数据集其平均准确率达到了 91.24%,平均特异度为95.72%.
Classification and Detection of Diabetic Retinopathy in Ultra-widefield Images Based on Attention Mechanism
To address the issue of low accuracy in image classification of Diabetic Retinopathy(DR),a classification method based on attention mechanisms is proposed.This method initially employs preprocessing techniques such as cropping,mean filtering,Gaussian filtering,and CLA-HE,The model is based on the DenseNet architecture and incorporates channel attention mecha-nisms and spatial attention mechanisms to further enhance its ability to recognize key features.Experimental results show that,compared to traditional methods,the improved model exhibits superior classification performance.On the Kaggle dataset,its average accuracy reached 89.15%,with an average specificity of 94.22%.On the ultra-wide-angle dataset,its average ac-curacy reached 91.24%,with an average specificity of 95.72%.

diabetic retinopathyattention mechanismDenseNetCLAHE

阚玉常、张光华、卓广平、汪扬、周金保、马非

展开 >

太原师范学院计算机科学与技术学院,山西晋中 030619

太原学院计算机科学与技术系,山西太原 030032

山西省眼科医院,山西太原 030002

糖尿病视网膜病变 注意力机制 DenseNet CLAHE

山西省科技攻关计划山西省科技攻关计划

202203021211006YDZJSX2022B015

2024

太原学院学报(自然科学版)
太原大学教育学院

太原学院学报(自然科学版)

CHSSCD
影响因子:0.315
ISSN:1673-7016
年,卷(期):2024.42(1)
  • 12