首页|基于优化K-means算法的高校成绩聚类分析研究

基于优化K-means算法的高校成绩聚类分析研究

扫码查看
针对经典 K 均值算法在聚类中心易受异常值影响,导致聚类结果不稳定的问题,提出基于样本分布密度的优化 K-means 算法,以提高聚类稳定性和准确性;聚类后通过 CH 指数和分类区间占比总体两种方法,客观评价 3 种离散化方法,结果表明,优化的 K-means 算法避免了区间分类不合理现象,更加准确地反映了成绩样本的分布特点.
Research on Cluster Analysis of College Grades Based on Optimized K-means Algorithm
In response to the problem of unstability in clustering results that is caused by sus-ceptibility of the classical K-means algorithm in the clustering center to outliers,this paper pro-poses an optimized K-means algorithm based on sample distribution density to improve the stabili-ty and accuracy of clustering.After clustering,the methods of CH index and overall percentage of classification intervals are used to objectively evaluate the three discretization methods.The re-sults show that the optimized K-means algorithm can avoid irrationality of interval classification and reflect distribution characteristics of grade samples more accurately.

mean algorithmdistribution densityclusteringK-means

张梁、杨立波、张小勇、史俊冰

展开 >

太原学院 智能与自动化系,山西 太原 030032

均值算法 分布密度 聚类 K-means

山西省教学改革创新项目山西省大学生创新创业训练计划山西大学生创新创业训练计划

J202314272023144220231472

2024

太原学院学报(自然科学版)
太原大学教育学院

太原学院学报(自然科学版)

CHSSCD
影响因子:0.315
ISSN:1673-7016
年,卷(期):2024.42(2)
  • 14